Efficient Bit-Parallel Multi-Patterns Approximate String Matching Algorithms

No Thumbnail Available

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Computer Engineering
(1998)
The Atılım University Department of Computer Engineering was founded in 1998. The department curriculum is prepared in a way that meets the demands for knowledge and skills after graduation, and is subject to periodical reviews and updates in line with international standards. Our Department offers education in many fields of expertise, such as software development, hardware systems, data structures, computer networks, artificial intelligence, machine learning, image processing, natural language processing, object based design, information security, and cloud computing. The education offered by our department is based on practical approaches, with modern laboratories, projects and internship programs. The undergraduate program at our department was accredited in 2014 by the Association of Evaluation and Accreditation of Engineering Programs (MÜDEK) and was granted the label EUR-ACE, valid through Europe. In addition to the undergraduate program, our department offers thesis or non-thesis graduate degree programs (MS).

Journal Issue

Events

Abstract

Multi-patterns approximate string matching (MASM) problem is to find all the occurrences of set of patterns P0, P1, P2...Pr-1, r≥1, in the given text T[0...n-1], allowing limited number of errors in the matches. This problem has many applications in computational biology viz. finding DNA subsequences after possible mutations, locating positions of a disease(s) in a genome etc. The MASM problem has been previously solved by Baeza-Yates and Navarro by extending the bit-parallel automata (BPA) of approximate matching and using the concept of classes of characters. The drawbacks of this approach are: (a) It requires verification for the potential matches and, (b) It can handle patterns of length less than or equal to word length (w) of computer used. In this paper, we propose two new bit-parallel algorithms to solve the same problem. These new algorithms requires no verification and can handle patterns of length > w. These two techniques also use the same BPA of approximate matching and concatenation to form a single pattern from the set of r patterns. We compare the performance of new algorithms with existing algorithms and found that our algorithms have better running time than the previous algorithms. © 2011 Academic Journals.

Description

Keywords

Algorithm, Approximate matching, Bit-parallelism, Finite automata, Multiple patterns

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Scientific Research and Essays

Volume

6

Issue

4

Start Page

876

End Page

881

Collections