EXISTENCE, UNIQUENESS AND SUCCESSIVE APPROXIMATIONS FOR (λ, ψ)-HILFER FRACTIONAL DIFFERENTIAL EQUATIONS

dc.authorwosidSalim, Abdelkrim/ABG-9621-2021
dc.authorwosidBenchohra, Mouffak/B-5618-2014
dc.contributor.authorKrim, Salim
dc.contributor.authorSalim, Abdelkrim
dc.contributor.authorBenchohra, Mouffak
dc.contributor.authorKarapinar, Erdal
dc.contributor.otherMathematics
dc.date.accessioned2024-10-06T10:58:38Z
dc.date.available2024-10-06T10:58:38Z
dc.date.issued2024
dc.departmentAtılım Universityen_US
dc.department-temp[Krim, Salim; Salim, Abdelkrim; Benchohra, Mouffak] Univ Djillali Liabes Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria; [Salim, Abdelkrim] Hassiba Benbouali Univ Chlef, Fac Technol, POB 151, Chlef 02000, Algeria; [Karapinar, Erdal] Atilim Univ, Dept Math, TR-06836 Incek, Ankara, Turkiye; [Karapinar, Erdal] China Med Univ, Dept Med Res, Taichung, Taiwanen_US
dc.description.abstractThe focus of this paper is on investigating a particular type of nonlinear (lambda, psi)-Hilfer fractional differential equations, and analyzing their existence results. Our approach involves utilizing Banach's fixed point theorem, and we also explore the global convergence of successive approximations to provide additional insights into the topic. To further illustrate our findings, we provide some examples that supplement our main results.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi[WOS-DOI-BELIRLENECEK-5]
dc.identifier.endpage28en_US
dc.identifier.issn1223-7027
dc.identifier.issue3en_US
dc.identifier.scopusqualityQ3
dc.identifier.startpage15en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/8931
dc.identifier.volume86en_US
dc.identifier.wosWOS:001301306000002
dc.identifier.wosqualityQ3
dc.institutionauthorKarapınar, Erdal
dc.language.isoenen_US
dc.publisherUniv Politehnica Bucharest, Sci Bullen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectImplicit differential equationsen_US
dc.subjectfractional differential equationsen_US
dc.subject(lambda, psi)-Hilfer fractional derivativeen_US
dc.subjectexistenceen_US
dc.subjectfixed pointen_US
dc.subjectglobal convergenceen_US
dc.subjectsuccessive approximationsen_US
dc.titleEXISTENCE, UNIQUENESS AND SUCCESSIVE APPROXIMATIONS FOR (λ, ψ)-HILFER FRACTIONAL DIFFERENTIAL EQUATIONSen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication69e25f84-afec-4c79-a19a-1e7811d90143
relation.isAuthorOfPublication.latestForDiscovery69e25f84-afec-4c79-a19a-1e7811d90143
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections