Poli(vinil Alkol) Grafen Nanokompozitlerin Geliştirilmesi

Loading...
Thumbnail Image

Date

2017

Authors

Gözütok, Melike
Şaşmazel, Hilal Türkoğlu

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

Çalışmanın amacı, polivinil alkol (PVA) ve grafenin formlarından indirgenmiş grafen oksit (rGO) ve kimyasal buharla biriktirilmiş (CVD) tek tabaka grafenin elektroeğirilmesiyle olası uygulamalarda (paketleme, elektriksel, termal ve doku mühendisliği) kullanılmak üzere yeni nanokompozitlerin elde edilmesidir. Bu amaç doğrultusunda iki farklı yöntem kullanılmıştır. Bunlardan ilki satın alınan PVA ve farklı yüzdelerdeki (ağırlıkça % 0.5 ve 1) rGO karışımının elektroeğirilmesiyken, diğeri PVA'nın CVD tek tabaka grafene elektroeğirilmesidir. Elde edilen nanokompozitlerin UV ışını ile çapraz bağlanmasının ardından, her iki tip malzemenin karakterizasyon özelliklerinin belirlenmesi; kalınlık, iletkenlik ve yüzey temas açısı (CA) ölçümleri, taramalı elektron mikroskobu (SEM), termogravimetrik (TGA) ve su, mekanik ve degredasyon (bozunma) testleri ve PBS şişme ve büzüşme davranış tayinleri ile yapılmıştır. Bunun yanı sıra rGO/PVA nanokompozitlerinin kimyasal kompozisyonları Fourier Dönüşümlü Kızılötesi Spektrofotometre (FTIR), kristal yapıdaki değişim X-ışını Kırınım (XRD) ile incelenmiş ek olarak su buharı geçirgenlik analizleri (WVTR) yapılmış; PVA elektroğrilmiş CVD tek tabaka grafen nanokompozitleri için ayrıca optik mikroskop ve Raman analizleri yapılmıştır. Bu analizler sonucunda, en yüksek fiber çapı ~340 nm ile elektroeğirilmiş %0.5 rGO+PVA nanokompozitleri için ölçülürken, en yüksek elektrik iletkenlik değeri elektroeğirilmiş % 1.0 rGO+PVA nanokompozitleri için ~11 μS.cm-1 olarak bulunmuştur. Bu analizlere ek olarak, hazırlanan nanokompozitlerin hücre-materyal etkileşimleri MG-63 hücre hattı kullanılarak gerçekleştirilmiştir. Tüm bu analizlerin sonucunda % 1.0 rGO+PVA tipi nanokompozitin olası uygulamalarda (paketleme, elektriksel, termal ve doku mühendisliği) kullanmak üzere oldukça uygun ve yararlı bir malzeme olduğu anlaşılmıştır.
The aim of this study was to develop nanocomposites by electrospinning with poly (vinyl alcohol) (PVA) and the forms of graphene, reduced graphene oxide (rGO) and Chemical Vapor Deposited (CVD)-grown monolayer graphene, in order to use them in possible applications such as packaging, electrical, thermal and tissue engineering. For this purpose, 2 major different approaches were utilized. First approach was electrospinning of PVA and rGO blend with different rGO contents (0.5 and 1 wt %), while the second approach was electrospinning of PVA solution onto a CVD-grown monolayer graphene. After crosslinking of the nanocomposites, the common characterizations were done by thickness and contact angle (CA) measurements; scanning electron microscopy (SEM), mechanical property and thermogravimetric (TGA) analyses; PBS absorption and shrinkage tests, in vitro degradation and electrical conductivity measurements. Besides, chemical examinations were done via Fourier Transmission Infrared Spectroscopy (FTIR) analyses, crystallinity observations were done with X-ray Diffraction (XRD) and water vapor transmission rate (WVTR) analyses for PVA/rGO nanocomposites while optical microscopy and Raman analyses were performed for PVA electrospun CVD-grown monolayer graphene nanocomposites. The highest fiber diameter belonged to electrospun PVA+0.5 wt% rGO (~388 nm) nanocomposites whereas the lowest fiber diameter was measured for the electrospun PVA mats (~340 nm). On the other hand, the highest electrical conductivity was recorded as ~11 μS.cm-1 for electrospun PVA+1.0 wt% rGO. Additionally cell-material interactions were observed with MG-63 osteosarcoma cell-line. At the end, it was suggested that electrospun PVA+1.0 wt% rGO nanocomposites were highly suitable candidates to be used in possible applications.

Description

Keywords

Metalurji Mühendisliği, Elektroeğirme yöntemi, Metallurgical Engineering, Nanokompozitler, Electrospinning method, Nanocomposites, Polivinil alkol, Polyvinyl alcohol

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

91