<i>4</i>-<i>Stage</i> Target Detection Approach In Hyperspectral Images

dc.authoridEsin, Yunus/0000-0002-3719-9290
dc.authoridDemirel, Berkan/0000-0002-5759-6410
dc.authorwosidEsin, Yunus/ABI-3881-2020
dc.authorwosidGunes, Ahmet/E-5481-2013
dc.contributor.authorOzdil, Omer
dc.contributor.authorGunes, Ahmet
dc.contributor.authorEsin, Yunus Emre
dc.contributor.authorOzturk, Safak
dc.contributor.authorDemirel, Berkan
dc.contributor.otherDepartment of Mechatronics Engineering
dc.date.accessioned2024-10-06T10:58:15Z
dc.date.available2024-10-06T10:58:15Z
dc.date.issued2018
dc.departmentAtılım Universityen_US
dc.department-temp[Ozdil, Omer; Esin, Yunus Emre; Ozturk, Safak; Demirel, Berkan] HAVELSAN Inc, Signal & Image Proc Grp, Ankara, Turkey; [Gunes, Ahmet] Atilim Univ, Fac Engn, Mechatron Engn, Ankara, Turkeyen_US
dc.descriptionEsin, Yunus/0000-0002-3719-9290; Demirel, Berkan/0000-0002-5759-6410en_US
dc.description.abstractPractical target detection systems require an automatic way to detect targets with high accuracy. Detection errors is not tolerable and they should be reduced as much as possible. In classical detection systems, generally single target detection algorithm is performed and the result will be evaluated according to the thresholding techniques. However, in these uncontrolled systems, false alarm rate strongly depends on the thresholding technique success. It is very hard to find a general and constant threshold value for images taken at different conditions and practical detection systems needs reliable threshold value. In this paper, we propose a new multi-stage target detection system which is the combination of different detection algorithms and thresholding technique. This system compose of 4-stages, i.e. namely 1-initial target detection (ACE, GLRT), 2-adaptive Constant False Alarm Rate (CFAR) thresholding, 3-spatially grouping, 4-statistical confidence operation. This system configuration removes the need for interactive user and it automatically implements confirmation and rejection steps. Moreover, this system can be used both for pure pixel and subpixel target detection purposes and it reduces computational processing time considerably with the implementation of consequtive processing stages.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citation0
dc.identifier.doi[WOS-DOI-BELIRLENECEK-95]
dc.identifier.isbn9781728115818
dc.identifier.issn2158-6268
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14411/8881
dc.identifier.wosWOS:000482659100079
dc.identifier.wosqualityN/A
dc.institutionauthorGüneş, Ahmet
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof9th Workshop on Hyperspectral Image and Signal Processing - Evolution in Remote Sensing (WHISPERS) -- SEP 23-26, 2018 -- Amsterdam, NETHERLANDSen_US
dc.relation.ispartofseriesWorkshop on Hyperspectral Image and Signal Processing
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHyperspectral image processingen_US
dc.subjecthyperspectral target detectionen_US
dc.subjectCFAR thresholdingen_US
dc.subjectfalse alarm mitigationen_US
dc.title<i>4</i>-<i>Stage</i> Target Detection Approach In Hyperspectral Imagesen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isAuthorOfPublication.latestForDiscovery86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isOrgUnitOfPublicatione2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscoverye2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections