<i>4</I>-<i>stage< Target Detection Approach in Hyperspectral Images

dc.authorid Esin, Yunus/0000-0002-3719-9290
dc.authorid Demirel, Berkan/0000-0002-5759-6410
dc.authorwosid Esin, Yunus/ABI-3881-2020
dc.authorwosid Gunes, Ahmet/E-5481-2013
dc.contributor.author Ozdil, Omer
dc.contributor.author Gunes, Ahmet
dc.contributor.author Esin, Yunus Emre
dc.contributor.author Ozturk, Safak
dc.contributor.author Demirel, Berkan
dc.contributor.other Department of Mechatronics Engineering
dc.date.accessioned 2024-10-06T10:58:15Z
dc.date.available 2024-10-06T10:58:15Z
dc.date.issued 2018
dc.department Atılım University en_US
dc.department-temp [Ozdil, Omer; Esin, Yunus Emre; Ozturk, Safak; Demirel, Berkan] HAVELSAN Inc, Signal & Image Proc Grp, Ankara, Turkey; [Gunes, Ahmet] Atilim Univ, Fac Engn, Mechatron Engn, Ankara, Turkey en_US
dc.description Esin, Yunus/0000-0002-3719-9290; Demirel, Berkan/0000-0002-5759-6410 en_US
dc.description.abstract Practical target detection systems require an automatic way to detect targets with high accuracy. Detection errors is not tolerable and they should be reduced as much as possible. In classical detection systems, generally single target detection algorithm is performed and the result will be evaluated according to the thresholding techniques. However, in these uncontrolled systems, false alarm rate strongly depends on the thresholding technique success. It is very hard to find a general and constant threshold value for images taken at different conditions and practical detection systems needs reliable threshold value. In this paper, we propose a new multi-stage target detection system which is the combination of different detection algorithms and thresholding technique. This system compose of 4-stages, i.e. namely 1-initial target detection (ACE, GLRT), 2-adaptive Constant False Alarm Rate (CFAR) thresholding, 3-spatially grouping, 4-statistical confidence operation. This system configuration removes the need for interactive user and it automatically implements confirmation and rejection steps. Moreover, this system can be used both for pure pixel and subpixel target detection purposes and it reduces computational processing time considerably with the implementation of consequtive processing stages. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 0
dc.identifier.isbn 9781728115818
dc.identifier.issn 2158-6268
dc.identifier.uri https://hdl.handle.net/20.500.14411/8881
dc.identifier.wos WOS:000482659100079
dc.institutionauthor Güneş, Ahmet
dc.language.iso en en_US
dc.publisher Ieee en_US
dc.relation.ispartof 9th Workshop on Hyperspectral Image and Signal Processing - Evolution in Remote Sensing (WHISPERS) -- SEP 23-26, 2018 -- Amsterdam, NETHERLANDS en_US
dc.relation.ispartofseries Workshop on Hyperspectral Image and Signal Processing
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Hyperspectral image processing en_US
dc.subject hyperspectral target detection en_US
dc.subject CFAR thresholding en_US
dc.subject false alarm mitigation en_US
dc.title <i>4</I>-<i>stage< Target Detection Approach in Hyperspectral Images en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isAuthorOfPublication.latestForDiscovery 86257279-23c4-46f4-b08b-2aaeb7b7082f
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscovery e2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections