Some Applications of Caristi’s Fixed Point Theorem in Metric Spaces

dc.authorscopusid35932401500
dc.authorscopusid16678995500
dc.authorscopusid54889041700
dc.contributor.authorKhojasteh,F.
dc.contributor.authorKarapınar, Erdal
dc.contributor.authorKarapinar,E.
dc.contributor.authorKhandani,H.
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:44:38Z
dc.date.available2024-07-05T15:44:38Z
dc.date.issued2016
dc.departmentAtılım Universityen_US
dc.department-tempKhojasteh F., Young Researcher and Elite Club, Arak-Branch, Islamic Azad University, Arak, Iran; Karapinar E., Department of Mathematics, Atilim University, İncek, Dusternbrooker Weg 20, Ankara, 06836, Turkey; Khandani H., Department of Mathematics, Mahabad-Branch, Islamic, Azad University, Mahabad, 06836, Iranen_US
dc.description.abstractIn this work, partial answers to Reich, Mizoguchi and Takahashi’s and Amini-Harandi’s conjectures are presented via a light version of Caristi’s fixed point theorem. Moreover, we introduce the idea that many of known fixed point theorems can easily be derived from the Caristi theorem. Finally, the existence of bounded solutions of a functional equation is studied. © 2016 Khojasteh et al.en_US
dc.identifier.citation12
dc.identifier.doi10.1186/s13663-016-0501-z
dc.identifier.issn1687-1820
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85007524192
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1186/s13663-016-0501-z
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3802
dc.identifier.volume2016en_US
dc.language.isoenen_US
dc.publisherSpringer International Publishingen_US
dc.relation.ispartofFixed Point Theory and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBoyd and Wong’s contractionen_US
dc.subjectCaristi’s fixed point theoremen_US
dc.subjectHausdorff metricen_US
dc.subjectMizoguchi-Takahashien_US
dc.subjectReich’s problemen_US
dc.titleSome Applications of Caristi’s Fixed Point Theorem in Metric Spacesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication69e25f84-afec-4c79-a19a-1e7811d90143
relation.isAuthorOfPublication.latestForDiscovery69e25f84-afec-4c79-a19a-1e7811d90143
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections