Some Applications of Caristi’s Fixed Point Theorem in Metric Spaces
dc.authorscopusid | 35932401500 | |
dc.authorscopusid | 16678995500 | |
dc.authorscopusid | 54889041700 | |
dc.contributor.author | Khojasteh,F. | |
dc.contributor.author | Karapınar, Erdal | |
dc.contributor.author | Karapinar,E. | |
dc.contributor.author | Khandani,H. | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:44:38Z | |
dc.date.available | 2024-07-05T15:44:38Z | |
dc.date.issued | 2016 | |
dc.department | Atılım University | en_US |
dc.department-temp | Khojasteh F., Young Researcher and Elite Club, Arak-Branch, Islamic Azad University, Arak, Iran; Karapinar E., Department of Mathematics, Atilim University, İncek, Dusternbrooker Weg 20, Ankara, 06836, Turkey; Khandani H., Department of Mathematics, Mahabad-Branch, Islamic, Azad University, Mahabad, 06836, Iran | en_US |
dc.description.abstract | In this work, partial answers to Reich, Mizoguchi and Takahashi’s and Amini-Harandi’s conjectures are presented via a light version of Caristi’s fixed point theorem. Moreover, we introduce the idea that many of known fixed point theorems can easily be derived from the Caristi theorem. Finally, the existence of bounded solutions of a functional equation is studied. © 2016 Khojasteh et al. | en_US |
dc.identifier.citation | 12 | |
dc.identifier.doi | 10.1186/s13663-016-0501-z | |
dc.identifier.issn | 1687-1820 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85007524192 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.uri | https://doi.org/10.1186/s13663-016-0501-z | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/3802 | |
dc.identifier.volume | 2016 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer International Publishing | en_US |
dc.relation.ispartof | Fixed Point Theory and Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Boyd and Wong’s contraction | en_US |
dc.subject | Caristi’s fixed point theorem | en_US |
dc.subject | Hausdorff metric | en_US |
dc.subject | Mizoguchi-Takahashi | en_US |
dc.subject | Reich’s problem | en_US |
dc.title | Some Applications of Caristi’s Fixed Point Theorem in Metric Spaces | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
relation.isAuthorOfPublication.latestForDiscovery | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |