IoT için rapsberry Pi ve USB hızlandırıcı ile derin öğrenme tabanlı yüz tanıma

dc.contributor.advisorKoyuncu, Murat
dc.contributor.authorYıldız, Kutay
dc.contributor.otherInformation Systems Engineering
dc.date.accessioned2024-07-07T12:47:17Z
dc.date.available2024-07-07T12:47:17Z
dc.date.issued2021
dc.departmentFen Bilimleri Enstitüsü / Bilişim Teknolojileri Ana Bilim Dalı
dc.description.abstractBilgisayar bilimi alanında derin öğrenme üzerine yapılan araştırmalar son zamanlarda oldukça arttı. Bir çok alanda tahmin performansı bazında derin öğrenme uygulamaları lider durumdadır, ancak, gerektirdiği yüksek işlemci gücü oldukça fazladır. Derin sinir ağı (DNN) modellerinin optimizasyonu üzerinde çalışan bir çok araştırma mevcuttur. Model optimizasyonuna ek olarak derin öğrenme tabanlı makine öğrenmesi (ML) uygulamalarına yönelik verimli güç kullanımı sağlayan özel donanımlar geliştirilmektedir. Bu çalışmanın amacı mobil platformlar için geliştirilmiş yüz tanıma algoritmalarının detaylı bir karşılaştırmasını yapmaktır. Testlerde Raspberry Pi ve makine öğrenmesi uygulamaları için geliştirilmiş Google's Coral Edge tensor işlem birimi (TPU) kullanıldı. Farklı yüz tanıma adımları (yüz tanıma, tipik nokta tanıma, öznitelik çıkarma) tek tek test edildi. Bireysel testlere ek olarak yüz tanıma hattı bir bütün olarak test edildi. Eğitim sonrası tamsayı indirgeme tekniği mobil modellerin daha ileri optimizasyonunun yapılabilirliğini test etmek amaçlı kullanıldı. Mobil platformlara ek olarak mobil olmayan platform üzerinde karşılaştırma amaçlı testler yapıldı. Raspberry Pi 4 TPU ile birlikte kullanıldığında DNN bazlı yüz tanıma uygulamalarında saniyede 14.7 kare hıza ulaşılabildi. Bu çalışmada sunulan karşılaştırma sonuçları yüz tanıma alanında çalışma yürüten uygulamacılara katkıda bulunabilir.
dc.description.abstractDeep learning has been around for many years but not until recently it became hot in computer science field. On many applications, state-of-the-art algorithms are based on deep learning. The downside of using a deep learning-based algorithm is the high processing power requirement. Many studies are dedicated on creating Deep Neural Network (DNN) models that require low processing power. In addition to efficient mobile DNN models, some specialized power-efficient hardware are also developed for mobile deep learning-based ML applications. The aim of this study is to compare face recognition algorithms that are developed for mobile platforms in detail. As hardware, two Raspberry Pi models and Google's Coral Edge tensor processing unit (TPU) which is a specialized hardware for ML inference are tested. A desktop PC is also included to compare the performance of mobile inference with desktop inference. Individual tests on different steps of face recognition (face detection, landmark detection, feature extraction, classification) are conducted. In addition to individual tests, a lot of face recognition pipelines constructed using alternative algorithms are also tested. Post-training integer quantization technique is also used on models to analyze if mobile DNN models can further be optimized for mobile platforms. It is concluded that Raspberry Pi 4 utilized with a TPU can yield up to 14.7 frames per second on DNN based face recognition applications. Results presented in this study may contribute to practitioners who plan to use face recognition on mobile platforms.en
dc.identifier.endpage128
dc.identifier.startpage0
dc.identifier.urihttps://hdl.handle.net/20.500.14411/5210
dc.identifier.yoktezid679520
dc.institutionauthorKoyuncu, Murat
dc.language.isoen
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol
dc.subjectDerin öğrenme
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.subjectNesnelerin interneti
dc.subjectDeep learningen_US
dc.subjectInternet of thingsen_US
dc.subjectYüz tanıma
dc.subjectFace recognitionen_US
dc.titleIoT için rapsberry Pi ve USB hızlandırıcı ile derin öğrenme tabanlı yüz tanıma
dc.titleDeep learning-based face recognition with raspberry Pi and USB accelerator for IoT environmentsen_US
dc.typeMaster Thesis
dspace.entity.typePublication
relation.isAuthorOfPublication948643aa-7723-4c65-8da8-fcc884405cd1
relation.isAuthorOfPublication.latestForDiscovery948643aa-7723-4c65-8da8-fcc884405cd1
relation.isOrgUnitOfPublicationcf0fb36c-0500-438e-b4cc-ad1d4ef25579
relation.isOrgUnitOfPublication.latestForDiscoverycf0fb36c-0500-438e-b4cc-ad1d4ef25579

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
679520 Deep learning-based face recognition.pdf
Size:
2.36 MB
Format:
Adobe Portable Document Format