28 GHz'de çoklu insan vücudu gölgelemesinin ölçülmesi ve modellenmesi

Loading...
Thumbnail Image

Date

2020

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Bu tez, iç mekân bağlantısı yakınlarında bulunan saçılmış insan vücutlarının etkilerini karakterize etmek amacıyla basitleştirilmiş insan vücudu modellerini ve onların ölçüm sonuçlarıyla kıyaslamasını sunmaktadır. Çalışmalar; insan vücudu tamamen verici ile alıcı arasındaki bağlantıyı engellerken gerçekleştirilmiştir. Ayrıca, ölçümler kablosuz beşinci nesil (5G) sistemler için büyük öneme sahip olan 28 GHz'de yapılmıştır. Ek olarak, insan vücudu modelleme ve dalga yayılım mekanizmalarının teorik arka planı ile çalışmaları kavramak için gerekli diğer kavramlardan kısaca bahsedilmiştir. Saçılmış halde bulunan insan etkileri, çift bıçak kenarı kırınımı (DKED) ve ışın izleme yoluyla geometrik kırınım teorisi (GTD) gibi modeller kullanılarak benzetimler yapılmıştır. Benzetimler esnasında, modellerde yansıma ve kırınım gibi temel dalga yayılma mekanizmalarından faydalanılmıştır. Benzetimler; bağlantı tamamıyla insan tarafından engellenmiş durumda iken saçılmış olarak bulunan bir ve iki insan vücudu senaryoları için ayrı ayrı gerçekleştirilmiştir. Ayrıca, bu benzetimler ilgili laboratuvar ölçümleri ile karşılaştırılmış ve ümit verici sonuçlar elde edilmiştir. Basitleştirilmiş kırınım modellerinin ölçümlerle uyum içinde olduğu görülmüştür. Bu modellerin milimetre dalgaları (mmWave) için kablosuz kanal tasarlarken faydalı olacağı düşünülmektedir. Diğer yandan, milimetre dalga bantlarında yakın gelecekte yapılacak tahsisler için bu tez çerçevesinde yeni çalışmalar geliştirilebilir. Ayrıca, basitleştirilmiş modeller, çoklu insan vücudunun farklı yerleşimlerdeki etkilerini karakterize etmek için genişletilebilir.
This thesis represents the simplified human body models and their comparison with measurement results to characterize the effects of the scattering human bodies near the indoor link. The studies were performed while the human body was entirely blocking the link between the transmitter to the receiver. The measurements were conducted at 28 GHz., which has great importance for the fifth-generation (5G) wireless systems. Additionally, the theoretical background of the human body modeling and mechanisms of wave propagation were presented with other required concepts to comprehend the studies briefly. The effects of the scattering human bodies were simulated using models such as double knife-edge diffraction (DKED) and geometric theory of diffraction (GTD) through ray-tracing. These models were exploited from underlying wave propagation mechanisms such as reflection and diffraction during the simulations. Moreover, the simulations were performed for scenarios; one and two human bodies as scattering objects while the link is fully blocked by another human body separately. Furthermore, these simulations were compared with the corresponding laboratory measurements, and promising results were obtained. The simplified human body models are compatible with the measurement results. It is considered that these models will be rewarding while designing the wireless channel for millimeter-wave (mmWave). The new studies within the frame of this thesis could be developed for the future allocations in mmWave bands. Besides, simplified models could be extended to characterize the effects of multiple human bodies for different deployments.

Description

Keywords

Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering, 5G, Five-Generation Wireless Telephone Technology

Turkish CoHE Thesis Center URL

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

59