A combined approach of clustering and association rule mining for customer profiling in video on demand services

Loading...
Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Software Engineering
(2005)
Department of Software Engineering was founded in 2005 as the first department in Ankara in Software Engineering. The recent developments in current technologies such as Artificial Intelligence, Machine Learning, Big Data, and Blockchains, have placed Software Engineering among the top professions of today, and the future. The academic and research activities in the department are pursued with qualified faculty at Undergraduate, Graduate and Doctorate Degree levels. Our University is one of the two universities offering a Doctorate-level program in this field. In addition to focusing on the basic phases of software (analysis, design, development, testing) and relevant methodologies in detail, our department offers education in various areas of expertise, such as Object-oriented Analysis and Design, Human-Computer Interaction, Software Quality Assurance, Software Requirement Engineering, Software Design and Architecture, Software Project Management, Software Testing and Model-Driven Software Development. The curriculum of our Department is catered to graduate individuals who are prepared to take part in any phase of software development of large-scale software in line with the requirements of the software sector. Department of Software Engineering is accredited by MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) until September 30th, 2021, and has been granted the EUR-ACE label that is valid in Europe. This label provides our graduates with a vital head-start to be admitted to graduate-level programs, and into working environments in European Union countries. The Big Data and Cloud Computing Laboratory, as well as MobiLab where mobile applications are developed, SimLAB, the simulation laboratory for Medical Computing, and software education laboratories of the department are equipped with various software tools and hardware to enable our students to use state-of-the-art software technologies. Our graduates are employed in software and R&D companies (Technoparks), national/international institutions developing or utilizing software technologies (such as banks, healthcare institutions, the Information Technologies departments of private and public institutions, telecommunication companies, TÜİK, SPK, BDDK, EPDK, RK, or universities), and research institutions such TÜBİTAK.

Journal Issue

Abstract

Günümüzde IPTV (İnternet Protokol Televizyonu) hizmet sağlayıcıları, daha fazla gelir elde etmek için yaptıkları iş girişimlerinin bir parçası olarak VoD (İsteğe Bağlı Video) hizmetleri sunmaktadır. Bunu yapmak için müşteri davranışları ve beklentileri hakkında bilgi sahibi olmaları gerekir. Kullanıcılarla ilgili bu tür bilgiler CRM (Müşteri İlişkileri Yönetimi) sistemlerinde saklanır. Bu çerçevede, bu çalışma VoD hizmetlerindeki müşterileri kümeleme ve dernek kuralı madenciliği teknikleri uygulayarak analiz etmeyi amaçlamaktadır. LRFMP (Uzunluk, Yenilik, Frekans, Parasal ve Periyodiklik) modeli, müşteri davranışlarını bulmak için uygulanır ve k-küme algoritmaları kümelerin ve müşteri profillerinin belirlenmesini sağlar. Sonuç olarak, dört farklı müşteri grubu, 'tüketen ve en değerli', 'daha az tüketen ve daha az değerli', 'daha az tüketen ama sadık' ve 'ne sadık ne de değerli' olarak tanımlanır. Bu çalışma için önemli bir bilgi kaynağı, abonelerin içerik kategorisi ve kiralama tercihleriyle ilgili olarak içerik türü veya türüdür. Bu amaçla, müşterilerin potansiyel kiralarını tahmin etmek için ilişkilendirme kuralı algoritması (Apriori) kullanılır. Bu çalışmada, IPTV hizmet sağlayıcılarının hassas müşteri davranışlarına ve tercihlerine daha fazla ışık tutması için birleşik bir yaklaşım yararlı olacaktır, bu da müşteri memnuniyetini artırmak ve uzun vadede gelirleri artırmak için her bir abone kategorisi için daha hedefli pazarlama stratejileri oluşturulmasına izin verir.
Today, IPTV (Internet Protocol Television) service providers offer VoD (Video on Demand) services as part of their business initiative toward generating more revenue. To do this, they need to know about customer behaviors and expectations. Such information related to users is stored in CRM (Customer Relationship Management) systems. Against this backdrop, the present work aims to analyze customers in VoD services with applying clustering and Association Rule Mining techniques. The LRFMP (Length, Recency, Frequency, Monetary, and Periodicity) model is applied to find out the customer behaviors, whereas the k-means clustering algorithms allow for determining the number of clusters and customer profiles. As a result, four different customer groups are identified, namely as 'consuming and most valuable', 'less consuming and less valuable', 'less consuming but loyal', and 'neither loyal nor valuable'. A major source of information for this study is the content type or genre as regards the content category and rental preferences of subscribers. To this end, the association rule algorithm (Apriori) is employed to predict the customers' potential rentals. A combined approach as such would be useful for IPTV service providers to further shed light on precise customer behaviors and preferences, thus allowing to create more targeted marketing strategies for each category of subscribers in order to improve customer satisfaction and increase revenues in the long run.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Eşleştirme kuralları, Computer Engineering and Computer Science and Control, Pazarlama stratejileri, Association rules, Marketing strategies, Veri madenciliği, Data mining

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

82