On the orthogonality of the q-derivatives of the discrete q-hermite I polynomials

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

IGI Global

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Abstract

Discrete q-Hermite I polynomials are a member of the q-polynomials of the Hahn class. They are the polynomial solutions of a second order difference equation of hypergeometric type. These polynomials are one of the q-analogous of the Hermite polynomials. It is well known that the q-Hermite I polynomials approach the Hermite polynomials as q tends to 1. In this chapter, the orthogonality property of the discrete q-Hermite I polynomials is considered. Moreover, the orthogonality relation for the k-th order q-derivatives of the discrete q-Hermite I polynomials is obtained. Finally, it is shown that, under a suitable transformation, these relations give the corresponding relations for the Hermite polynomials in the limiting case as q goes to 1. © 2020, IGI Global.

Description

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Scopus Q

Source

Emerging Applications of Differential Equations and Game Theory

Volume

Issue

Start Page

135

End Page

162

Collections