Similarity-inclusive Link Prediction with Quaternions

dc.authorscopusid55806648900
dc.authorscopusid6701450919
dc.authorscopusid36661765600
dc.authorscopusid15081108900
dc.contributor.authorKurt,Z.
dc.contributor.authorGerek,Ö.N.
dc.contributor.authorBilge,A.
dc.contributor.authorÖzkan,K.
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-10-06T11:16:49Z
dc.date.available2024-10-06T11:16:49Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-tempKurt Z., Department of Computer Engineering, Atılım University, Ankara, Turkey; Gerek Ö.N., Department of Electrical and Electronics Engineering, Eskişehir Technical University, Eskişehir, Turkey; Bilge A., Department of Computer Engineering, Akdeniz University, Antalya, Turkey; Özkan K., Department of Computer Engineering, Eskişehir Osmangazi University, Eskişehir, Turkeyen_US
dc.descriptionInstitute for Systems and Technologies of Information, Control and Communication (INSTICC)en_US
dc.description.abstractThis paper proposes a Quaternion-based link prediction method, a novel representation learning method for recommendation purposes. The proposed algorithm depends on and computation with Quaternion algebra, benefiting from the expressiveness and rich representation learning capability of the Hamilton products. The proposed method depends on a link prediction approach and reveals the significant potential for performance improvement in top-N recommendation tasks. The experimental results indicate the superior performance of the approach using two quality measurements – hits rate, and coverage - on the Movielens and Hetrec datasets. Additionally, extensive experiments are conducted on three subsets of the Amazon dataset to understand the flexibility of this algorithm to incorporate different information sources and demonstrate the effectiveness of Quaternion algebra in graph-based recommendation algorithms. The proposed algorithms obtain comparatively higher performance, they are improved with similarity factors. The results show that the proposed quaternion-based algorithm can effectively deal with the deficiencies in graph-based recommender system, making it a preferable alternative among the other available methods. Copyright © 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved.en_US
dc.identifier.citation1
dc.identifier.doi[SCOPUS-DOI-BELIRLENECEK-37]
dc.identifier.endpage854en_US
dc.identifier.isbn978-989758509-8
dc.identifier.issn2184-4992
dc.identifier.scopus2-s2.0-85130355111
dc.identifier.scopusqualityN/A
dc.identifier.startpage842en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/9549
dc.identifier.volume1en_US
dc.identifier.wosqualityN/A
dc.institutionauthorKurt, Zühal
dc.language.isoenen_US
dc.publisherScience and Technology Publications, Ldaen_US
dc.relation.ispartofInternational Conference on Enterprise Information Systems, ICEIS - Proceedings -- 23rd International Conference on Enterprise Information Systems, ICEIS 2021 -- 26 April 2021 through 28 April 2021 -- Virtual, Online -- 180136en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGraphsen_US
dc.subjectLink Predictionen_US
dc.subjectQuaternionsen_US
dc.subjectRecommender Systemen_US
dc.titleSimilarity-inclusive Link Prediction with Quaternionsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationc1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isAuthorOfPublication.latestForDiscoveryc1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections