Mobile Robot Navigation Using Reinforcement Learning in Unknown Environments

dc.contributor.author Khan, M. U.
dc.contributor.other Mechatronics Engineering
dc.date.accessioned 2024-09-10T21:36:28Z
dc.date.available 2024-09-10T21:36:28Z
dc.date.issued 2019
dc.department Atılım University en_US
dc.department-temp ATILIM ÜNİVERSİTESİ en_US
dc.description.abstract In mobile robotics, navigation is considered as one of the most primary tasks, which becomes more challenging during local navigation when the environment is unknown. Therefore, the robot has to explore utilizing the sensory information. Reinforcement learning (RL), a biologically-inspired learning paradigm, has caught the attention of many as it has the capability to learn autonomously in an unknown environment. However, the randomized behavior of exploration, common in RL, increases computation time and cost, hence making it less appealing for real-world scenarios. This paper proposes an informed-biased softmax regression (iBSR) learning process that introduce a heuristic-based cost function to ensure faster convergence. Here, the action-selection is not considered as a random process, rather, is based on the maximum probability function calculated using softmax regression. Through experimental simulation scenarios for navigation, the strength of the proposed approach is tested and, for comparison and analysis purposes, the iBSR learning process is evaluated against two benchmark algorithms. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.17694/bajece.532746
dc.identifier.endpage 244 en_US
dc.identifier.issn 2147-284X
dc.identifier.issue 3 en_US
dc.identifier.startpage 235 en_US
dc.identifier.trdizinid 318134
dc.identifier.uri https://doi.org/10.17694/bajece.532746
dc.identifier.uri https://search.trdizin.gov.tr/tr/yayin/detay/318134/mobile-robot-navigation-using-reinforcement-learning-in-unknown-environments
dc.identifier.uri https://hdl.handle.net/20.500.14411/7421
dc.identifier.volume 7 en_US
dc.institutionauthor Khan, Muhammad Umer
dc.language.iso en en_US
dc.relation.ispartof Balkan Journal of Electrical and Computer Engineering en_US
dc.relation.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Mühendislik en_US
dc.subject Biyotıp en_US
dc.subject Mühendislik en_US
dc.subject Elektrik ve Elektronik en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Yazılım Mühendisliği en_US
dc.subject Yeşil en_US
dc.subject Sürdürülebilir Bilim ve Teknoloji en_US
dc.subject Telekomünikasyon en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Sibernitik en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Bilgi Sistemleri en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Donanım ve Mimari en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Teori ve Metotlar en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Yapay Zeka en_US
dc.title Mobile Robot Navigation Using Reinforcement Learning in Unknown Environments en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isAuthorOfPublication.latestForDiscovery e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isOrgUnitOfPublication cfebf934-de19-4347-b1c4-16bed15637f7
relation.isOrgUnitOfPublication.latestForDiscovery cfebf934-de19-4347-b1c4-16bed15637f7

Files

Collections