Anomaly detection using fuzzy Q-learning algorithm

dc.authorscopusid57221738247
dc.authorscopusid22733749500
dc.authorscopusid24833455600
dc.authorscopusid56962766700
dc.contributor.authorShamshirband,S.
dc.contributor.authorAnuar,N.B.
dc.contributor.authorKiah,M.L.M.
dc.contributor.authorMisra,S.
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-10-06T11:15:19Z
dc.date.available2024-10-06T11:15:19Z
dc.date.issued2014
dc.departmentAtılım Universityen_US
dc.department-tempShamshirband S., Department of Computer Science, Chalous Branch, Islamic Azad University (IAU), Chalous, 46615-397, Iran; Anuar N.B., University of Malaya, Kuala Lumpur, 50603, Malaysia; Kiah M.L.M., University of Malaya, Kuala Lumpur, 50603, Malaysia; Misra S., Department of Computer Engineering, Atilim University, Incek, Ankara, 06836, Turkeyen_US
dc.description.abstractWireless networks are increasingly overwhelmed by Distributed Denial of Service (DDoS) attacks by generating flooding packets that exhaust critical computing and communication resources of a victim's mobile device within a very short period of time. This must be protected. Effective detection of DDoS attacks requires an adaptive learning classifier, with less computational complexity, and an accurate decision making to stunt such attacks. In this paper, we propose an intrusion detection system called Fuzzy Q-learning (FQL) algorithm to protect wireless nodes within the network and target nodes from DDoS attacks to identify the attack patterns and take appropriate countermeasures. The FQL algorithm was trained and tested to establish its performance by generating attacks from the NSL-KDD and CAIDA DDoS Attack datasets during the simulation experiments. Experimental results show that the proposed FQL IDS has higher accuracy of detection rate than Fuzzy Logic Controller and Q-learning algorithm alone. © 2014 Instituto de Pesquisas Economicas da FEA-USP. All rights reserved.en_US
dc.identifier.citation22
dc.identifier.doi[SCOPUS-DOI-BELIRLENECEK-190]
dc.identifier.endpage28en_US
dc.identifier.issn1785-8860
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-84908498737
dc.identifier.scopusqualityQ1
dc.identifier.startpage5en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/9408
dc.identifier.volume11en_US
dc.identifier.wosqualityQ3
dc.institutionauthorMısra, Sanjay
dc.language.isoenen_US
dc.publisherBudapest Tech Polytechnical Institutionen_US
dc.relation.ispartofActa Polytechnica Hungaricaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy systemen_US
dc.subjectIntrusion detectionen_US
dc.subjectMulti Agent Systemen_US
dc.subjectReinforcement learningen_US
dc.titleAnomaly detection using fuzzy Q-learning algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections