An Unconventional Splitting for Korteweg de Vries–Burgers Equation

dc.contributor.authorAydın, Ayhan
dc.contributor.otherMathematics
dc.date.accessioned2024-07-08T12:53:03Z
dc.date.available2024-07-08T12:53:03Z
dc.date.issued2015
dc.date.issuedtemp2015-08-08
dc.description.abstractNumerical solutions of the Korteweg de Vries–Burgers (KdVB) equation based on splitting is studied. We put a real parameter into a KdVB equation and split the equation into two parts. The real parameter that is inserted into the KdVB equation enables us to play with the splitted parts. The real parameter enables to write the each splitted equation as close to the Korteweg de Vries (KdV) equation as we wish and as far from the Burgers equation as we wish or vice a versa. Then we solve the splitted parts numerically and compose the solutions to obtained the integrator for the KdVB equation. Finally we present some numerical experiments for the solution of the KdV, Burger’s and KdVB equations. The numerical experiments shows that the new splitting gives feasible and valid results.
dc.identifier.urihttps://hdl.handle.net/20.500.14411/6380
dc.institutionauthorAydın, Ayhan
dc.language.isoen
dc.publisherEUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
dc.subjectmathematics
dc.titleAn Unconventional Splitting for Korteweg de Vries–Burgers Equation
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication.latestForDiscovery51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files