An Unconventional Splitting for Korteweg de Vries–Burgers Equation

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Numerical solutions of the Korteweg de Vries–Burgers (KdVB) equation based on splitting is studied. We put a real parameter into a KdVB equation and split the equation into two parts. The real parameter that is inserted into the KdVB equation enables us to play with the splitted parts. The real parameter enables to write the each splitted equation as close to the Korteweg de Vries (KdV) equation as we wish and as far from the Burgers equation as we wish or vice a versa. Then we solve the splitted parts numerically and compose the solutions to obtained the integrator for the KdVB equation. Finally we present some numerical experiments for the solution of the KdV, Burger’s and KdVB equations. The numerical experiments shows that the new splitting gives feasible and valid results.

Description

Keywords

mathematics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo