Romberg integration: A symbolic approach with mathematica
dc.authorscopusid | 8514029100 | |
dc.authorscopusid | 6602979400 | |
dc.authorscopusid | 6603812263 | |
dc.contributor.author | Yazici,A. | |
dc.contributor.author | Ergenç,T. | |
dc.contributor.author | Altas,I. | |
dc.contributor.other | Mathematics | |
dc.contributor.other | Software Engineering | |
dc.date.accessioned | 2024-07-05T15:41:55Z | |
dc.date.available | 2024-07-05T15:41:55Z | |
dc.date.issued | 2003 | |
dc.department | Atılım University | en_US |
dc.department-temp | Yazici A., Computer Engineering Department, Atilim University, Ankara, Turkey; Ergenç T., Mathematics Department, Middle East Technical University, Ankara, Turkey; Altas I., School of Information Studies, Wagga Wagga, NSW, Australia | en_US |
dc.description.abstract | Higher order approximations of an integral can be obtained from lower order ones in a systematic way. For 1-D integrals Romberg Integration is an example which is based upon the composite trapezoidal rule and the well-known Euler-Maclaurin expansion of the error. In this work, Mathematica is utilized to illustrate the method and the underlying theory in a symbolic fashion. This approach seems plausible for discussing integration in a numerical computing laboratory environment. © Springer-Verlag Berlin Heidelberg 2003. | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1007/3-540-44860-8_71 | |
dc.identifier.endpage | 700 | en_US |
dc.identifier.isbn | 978-354044860-0 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.scopus | 2-s2.0-35248866185 | |
dc.identifier.startpage | 691 | en_US |
dc.identifier.uri | https://doi.org/10.1007/3-540-44860-8_71 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/3518 | |
dc.identifier.volume | 2657 | en_US |
dc.institutionauthor | Yazıcı, Ali | |
dc.institutionauthor | Ergenç, Tanıl | |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | [No Keyword Available] | en_US |
dc.title | Romberg integration: A symbolic approach with mathematica | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | da7e013c-bd57-4ea1-bfa8-e2b6b92dd61e | |
relation.isAuthorOfPublication | 35558a72-4b0b-432f-918e-967c9dcb4f0a | |
relation.isAuthorOfPublication.latestForDiscovery | da7e013c-bd57-4ea1-bfa8-e2b6b92dd61e | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication | d86bbe4b-0f69-4303-a6de-c7ec0c515da5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |