Romberg integration: A symbolic approach with mathematica

dc.authorscopusid8514029100
dc.authorscopusid6602979400
dc.authorscopusid6603812263
dc.contributor.authorYazici,A.
dc.contributor.authorErgenç,T.
dc.contributor.authorAltas,I.
dc.contributor.otherMathematics
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T15:41:55Z
dc.date.available2024-07-05T15:41:55Z
dc.date.issued2003
dc.departmentAtılım Universityen_US
dc.department-tempYazici A., Computer Engineering Department, Atilim University, Ankara, Turkey; Ergenç T., Mathematics Department, Middle East Technical University, Ankara, Turkey; Altas I., School of Information Studies, Wagga Wagga, NSW, Australiaen_US
dc.description.abstractHigher order approximations of an integral can be obtained from lower order ones in a systematic way. For 1-D integrals Romberg Integration is an example which is based upon the composite trapezoidal rule and the well-known Euler-Maclaurin expansion of the error. In this work, Mathematica is utilized to illustrate the method and the underlying theory in a symbolic fashion. This approach seems plausible for discussing integration in a numerical computing laboratory environment. © Springer-Verlag Berlin Heidelberg 2003.en_US
dc.identifier.citation0
dc.identifier.doi10.1007/3-540-44860-8_71
dc.identifier.endpage700en_US
dc.identifier.isbn978-354044860-0
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-35248866185
dc.identifier.startpage691en_US
dc.identifier.urihttps://doi.org/10.1007/3-540-44860-8_71
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3518
dc.identifier.volume2657en_US
dc.institutionauthorYazıcı, Ali
dc.institutionauthorErgenç, Tanıl
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleRomberg integration: A symbolic approach with mathematicaen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationda7e013c-bd57-4ea1-bfa8-e2b6b92dd61e
relation.isAuthorOfPublication35558a72-4b0b-432f-918e-967c9dcb4f0a
relation.isAuthorOfPublication.latestForDiscoveryda7e013c-bd57-4ea1-bfa8-e2b6b92dd61e
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections