El tipi lazer-oluşturmalı plazma spektroskopisi (LIBS) aygıtı geliştirilmesi

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Bu tezde, makine öğrenmesi algoritmalarını kullanarak örnekleri birbirinden ayırt edebilen bir el tipi sistem geliştirdik. Bu tezin temel amacı, yüksek enerjili malzemeleri ayırt etmek için temel oluşturan bir sistem geliştirmektir. Bu sistem, C (248 nm, 1069 nm), O (777 nm, 926 nm), H (656 nm,486 nm), N (868nm, 1011 nm), San Bantları (300 nm – 650 nm) gibi element ve moleküllere sahip olan yüksek enerjili malzemeleri niteliksel ve niceliksel olarak analiz edebilir. Bu elementlerin ve moleküllerin dalga boyu bilgileri Ulusal Standartlar ve Teknoloji Enstitüsü (NIST) veri tabanından elde edilmiştir. Bu sistem, örnekleri analiz etmek ve belirlemek için makine öğrenme algoritması (Destek Vektör Makinesi/SVM) kullanır. El tipi bir sistem olarak geliştirilen bu sistem, sonuç olarak tüm kontrol, iletişim ve kullanıcı ara yüzü (UI) mekanizmaları için gömülü platformda geliştirilmiştir. Bu amaçla ST Microelectronics tarafından geliştirilen ve STM32F746ZGT6 modeli olan ARM (ARM Cortex M7) tabanlı mikro denetleyici birimi (MCU) kullanıyoruz.
In this thesis, we developed a handheld system that can distinguish samples between them using machine learning algorithms. The main aim of this thesis is developing a system that is base for distinguishing high energetic materials. This system can analyze qualitatively and quantitatively high energetic materials those have elements and molecules as C (248 nm, 1069 nm), O (777 nm, 926 nm), H (656 nm,486 nm), N (868nm, 1011 nm), Swan Bands (300 nm – 650 nm). The wavelength of these elements and molecules information has been obtained from National Institute of Standards and Technology (NIST) database. This system uses machine learning algorithm (Support Vector Machine/SVM) to analyze and determine samples. This system developed as a handheld system, as a result has been developed in embedded platform for all the control, communication and user interface (UI) mechanisms. We use an ARM (ARM Cortex M7) based microcontroller unit (MCU) that is developed by ST Microelectronics and model is STM32F746ZGT6 for this purpose.

Description

Keywords

Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

44