Multisymplectic Integrators for Coupled Nonlinear Partial Differential Equations

dc.authorscopusid6603369633
dc.authorscopusid56363624700
dc.contributor.authorKaras̈ozen,B.
dc.contributor.authorAydın, Ayhan
dc.contributor.authorAydin,A.
dc.contributor.authorAydın, Ayhan
dc.contributor.otherMathematics
dc.contributor.otherMathematics
dc.date.accessioned2024-10-06T11:14:42Z
dc.date.available2024-10-06T11:14:42Z
dc.date.issued2012
dc.departmentAtılım Universityen_US
dc.department-tempKaras̈ozen B., Department of Mathematics, Institute of Middle East Technical University, 06531 Ankara, Turkey; Aydin A., Department of Mathematics, Atilim University, 06836 Ankara, Turkeyen_US
dc.description.abstractThe numerical solution of nonlinear partial differential equations (PDEs) using symplectic geometric integrators has been the subject of many studies in recent years. Many nonlinear partial differential equations can be formulated as an infinite dimensional Hamiltonian system. After semi-discretization in the space variable, a system of Hamiltonian ordinary differential equations (ODEs) is obtained, for which various symplectic integrators can be applied. Numerical results show that symplectic schemes have superior performance, especially in long time simulations. The concept of multisymplectic PDEs and multisymplectic schemes can be viewed as the generalization of symplectic schemes. In the last decade, many multisymplectic methods have been proposed and applied to nonlinear PDEs, like to nonlinear wave equation, nonlinear Schr̈odinger equation, Korteweg de Vries equation, Dirac equation, Maxwell equation and sine-Gordon equation. In this review article, recent results of multisymplectic integration on the coupled nonlinear PDEs, the coupled nonlinear Schr̈odinger equation, the modified complex Korteweg de Vries equation and the Zakharov system will be given. The numerical results are discussed with respect to the stability of the schemes, accuracy of the solutions, conservation of the energy and momentum, preservation of dispersion relations. © 2012 Nova Science Publishers, Inc. All rights reserved.en_US
dc.identifier.citationcount0
dc.identifier.endpage295en_US
dc.identifier.isbn978-161324790-7
dc.identifier.scopus2-s2.0-84891989268
dc.identifier.startpage267en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/9321
dc.institutionauthorAydın, Ayhan
dc.language.isoenen_US
dc.publisherNova Science Publishers, Inc.en_US
dc.relation.ispartofComputer Physicsen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount0
dc.subjectComplex Korteweg de Vries equationen_US
dc.subjectCoupled nonlinear Schr̈odinger equationen_US
dc.subjectDispersionen_US
dc.subjectMultisymplectic integratorsen_US
dc.subjectPeriodic wavesen_US
dc.subjectSolitonsen_US
dc.subjectSplitting methodsen_US
dc.titleMultisymplectic Integrators for Coupled Nonlinear Partial Differential Equationsen_US
dc.typeBook Parten_US
dspace.entity.typePublication
relation.isAuthorOfPublication51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication.latestForDiscovery51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections