Multisymplectic Integrators for Coupled Nonlinear Partial Differential Equations

dc.contributor.author Karas̈ozen,B.
dc.contributor.author Aydın, Ayhan
dc.contributor.author Aydin,A.
dc.contributor.author Aydın, Ayhan
dc.contributor.other Mathematics
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-10-06T11:14:42Z
dc.date.available 2024-10-06T11:14:42Z
dc.date.issued 2012
dc.description.abstract The numerical solution of nonlinear partial differential equations (PDEs) using symplectic geometric integrators has been the subject of many studies in recent years. Many nonlinear partial differential equations can be formulated as an infinite dimensional Hamiltonian system. After semi-discretization in the space variable, a system of Hamiltonian ordinary differential equations (ODEs) is obtained, for which various symplectic integrators can be applied. Numerical results show that symplectic schemes have superior performance, especially in long time simulations. The concept of multisymplectic PDEs and multisymplectic schemes can be viewed as the generalization of symplectic schemes. In the last decade, many multisymplectic methods have been proposed and applied to nonlinear PDEs, like to nonlinear wave equation, nonlinear Schr̈odinger equation, Korteweg de Vries equation, Dirac equation, Maxwell equation and sine-Gordon equation. In this review article, recent results of multisymplectic integration on the coupled nonlinear PDEs, the coupled nonlinear Schr̈odinger equation, the modified complex Korteweg de Vries equation and the Zakharov system will be given. The numerical results are discussed with respect to the stability of the schemes, accuracy of the solutions, conservation of the energy and momentum, preservation of dispersion relations. © 2012 Nova Science Publishers, Inc. All rights reserved. en_US
dc.identifier.isbn 978-161324790-7
dc.identifier.scopus 2-s2.0-84891989268
dc.identifier.uri https://hdl.handle.net/20.500.14411/9321
dc.language.iso en en_US
dc.publisher Nova Science Publishers, Inc. en_US
dc.relation.ispartof Computer Physics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Complex Korteweg de Vries equation en_US
dc.subject Coupled nonlinear Schr̈odinger equation en_US
dc.subject Dispersion en_US
dc.subject Multisymplectic integrators en_US
dc.subject Periodic waves en_US
dc.subject Solitons en_US
dc.subject Splitting methods en_US
dc.title Multisymplectic Integrators for Coupled Nonlinear Partial Differential Equations en_US
dc.type Book Part en_US
dspace.entity.type Publication
gdc.author.institutional Aydın, Ayhan
gdc.author.scopusid 6603369633
gdc.author.scopusid 56363624700
gdc.coar.access metadata only access
gdc.coar.type text::book::book part
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Karas̈ozen B., Department of Mathematics, Institute of Middle East Technical University, 06531 Ankara, Turkey; Aydin A., Department of Mathematics, Atilim University, 06836 Ankara, Turkey en_US
gdc.description.endpage 295 en_US
gdc.description.publicationcategory Kitap Bölümü - Uluslararası en_US
gdc.description.startpage 267 en_US
gdc.scopus.citedcount 0
relation.isAuthorOfPublication 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication.latestForDiscovery 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections