Zaman Skalasında Dinamik Denklemlerin Seri Çözümleri

Loading...
Thumbnail Image

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Events

Abstract

Bu tez çalışmasında, zaman skalasında dinamik denklemler için seri çözüm yöntemini çalıştık. Verilen bir dinamik denklemin çözümü için seri açılımı önerdik ve bu serinin katsayılarını belirlemek için genel bir rekürans bağıntısı elde ettik. Zaman skalası ve dinamik denklemlerin önemi, zaman skalasının, sürekli ve kesikli analizi birleştirmesinde ve dolayısıyla dinamik denklemler de, diferansiyel ve fark denklemlerini kapsamasında kendini belli etmektedir. Bölüm 1'de zaman skalası ve bazı ilgili kavramların tanımları ile birlikte örnekler verdik. Zaman skalasında tanımlı fonksiyonlar için Delta türev ve integral gibi temel analiz kavramlarını Bölüm 2'de verdik. Bu bölümde aynı zamanda bazı elemanter fonksiyonları da tanımladık. Üçüncü bölüm birinci ve daha yüksek mertebeden dinamik denklemlerin temel teorisine adanmıştır. Seri çözüm yöntemi ayrıntılı olarak Bölüm 4'de açıklanmıştır. Bölüm 5'de bu yöntemi, sabit ve değişken katsayılı olmak üzere belirli doğrusal dinamik denklem örneklerine uyguladık. Son olarak, Bölüm 6'da sonuçları tartıştık.
In this thesis, we study the series solution method for dynamic equations on time scales. We propose a series expansion for the solution of a given dynamic equation and derive a very general recurrence relation formula for the computation of the coefficients in this series. The importance of time scales and dynamic equations on time scales shows itself in the fact that time scales unify the continuous and discrete analysis and therefore, dynamic equations cover both the differential and difference equations. In Chapter 1 we give the definition of time scales, some basic notions on time scales and present some examples. We introduce basic calculus concepts such as delta derivative and integral of function defined on time scales in Chapter 2. In the same chapter we also define some elementary functions on time scales. Chapter 3 is devoted to basic thery of linear dynamic equation of first and higher order. The series solution method is presented in details in Chapter 4. In Chapter 5 we apply the method to some specific examples of linear dynamic equations including both constant and nonconstant coefficients equations. Finally, we discuss the conclussion in Chapter 6.

Description

Keywords

Matematik, Mathematics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

81