Derin çevresel sinir ağını kullanarak mide kanser sınıflandırması

dc.contributor.advisorTora, Hakan
dc.contributor.authorJebur, Saıf Salam
dc.contributor.otherAirframe and Powerplant Maintenance
dc.date.accessioned2024-07-07T12:42:25Z
dc.date.available2024-07-07T12:42:25Z
dc.date.issued2020
dc.departmentFen Bilimleri Enstitüsü / Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
dc.description.abstractBu tezde, önceden eğitilmiş birkaç CNN ve CNN yapımız endoskopik görüntülerde erken mide kanserinin otomatik olarak tespit edilmesine sunulmuştur. İlk aşamada, iki tip normal ve görüntü veri kümelerinin kanseri kullanılarak yapılan transfer öğrenimi, MATLAB 2018 kullanılarak mide kanseri tespiti için önceden eğitilmiş ağlar gerçekleştirildi. Daha sonra elde edilen sonuçlar birbirleriyle karşılaştırıldı ve ayrıntılı olarak tartışıldı. İkinci aşamada, CNN kullanılarak önerilen yeni yapı. Önerilen yapı SoftMax sınıflandırıcılı 8 katmandan oluşur. Son katmanda SoftMax tarafından sınıflandırılan evrişimsel katmanlarla çıkarılan yüksek seviye özellikler. Önerilen ağ 99.88% sundu ve bu da önceden eğitilmiş birkaç ağla karşılaştırıldığında yüksek sonuçtur. Ayrıca, önerilen ağ, çeşitli transfer öğrenme teknikleriyle karşılaştırıldığında dikkate değer bir yürütme süresi sundu.
dc.description.abstractIn this thesis, several pre-trained CNN and our CNN structure presented to automatic detection of early gastric cancer in endoscopic images. In the first stage, the transfer learning using two types normal and cancer of image datasets, the pre-trained networks executed for gastric cancer detection using MATLAB 2018. Then, the obtained results compared with each other and discussed in detail form. In the second stage, new structure proposed by using CNN. The proposed structure consists from 8 layers with SoftMax classifier. The extracted high-level features by convolutional layers classified by SoftMax in last layer. The proposed network presented 99.88% which is high result when compared with numerous performed pre-trained networks. Furthermore, the proposed network presented remarkable execution time when compared with several transfer learning techniques.en
dc.identifier.endpage138
dc.identifier.startpage0
dc.identifier.urihttps://hdl.handle.net/20.500.14411/4654
dc.identifier.yoktezid667456
dc.institutionauthorTora, Hakan
dc.language.isoen
dc.subjectElektrik ve Elektronik Mühendisliği
dc.subjectElectrical and Electronics Engineeringen_US
dc.titleDerin çevresel sinir ağını kullanarak mide kanser sınıflandırması
dc.titleGastric cancer classification using deep convolutional neural networken_US
dc.typeMaster Thesis
dspace.entity.typePublication
relation.isAuthorOfPublication3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isAuthorOfPublication.latestForDiscovery3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isOrgUnitOfPublication0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5
relation.isOrgUnitOfPublication.latestForDiscovery0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
667456 Gastric cancer classification using deep convolutional neural network.pdf
Size:
3.74 MB
Format:
Adobe Portable Document Format