Standstill Estimation of Stator Resistance of Induction Motors with Novel Innovation-Based Adaptive Extended Kalman Filter
No Thumbnail Available
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers Inc.
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In this study, a method is developed to identify stator resistance of an induction motor (IM) at standstill in the self-tuning. An innovation-based adaptive extended Kalman filter (IAEKF) estimator in which the process noise is dynamically updated with an adaptive mechanism different from the conventional extended Kalman filter (EKF) is designed to estimate stator resistance with αβ- stator stationary axis components of stator current and αβ- components of stator flux of an IM. The reason for estimating the stator flux and stator current together with the stator resistance is to both increase the stability of the proposed estimator algorithm by using the correlation between the parameters and states in the non-linear inputs applied to the estimator and obtain the motor flux information needed by the control system. In the proposed IAEKF algorithm, a stator flux-based IM model is used for prediction purposes. The standstill estimation performance of the proposed novel IAEKF is tested with both sinusoidal and PWM power supplies, The real-time estimation results show the effectiveness and prediction accuracy of the proposed stochastic-based estimator. © 2021 IEEE.
Description
Keywords
adaptive extended Kalman filter, induction motor, standstill operation, stator resistance
Turkish CoHE Thesis Center URL
Fields of Science
Citation
3
WoS Q
Scopus Q
Source
2021 International Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2021 and 2021 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2021 -- 2021 International Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2021 and 2021 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2021 -- 2 September 2021 through 3 September 2021 -- Brasov -- 173666
Volume
Issue
Start Page
439
End Page
444