An Approach for Identifying the Likelihood of an Irregular Terrain Profile Being a Multipath Scattering Center in Emitter Localization

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Association for Computing Machinery

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

In a single-receiver source localization scenario, pulses radiated from an emitting source (emitter) are reradiated from distributed points over the irregular terrain due to the diffuse scattering. Obviously, diffuse scattering may be occurred at anywhere over irregular terrains in dense scattering environments. Hence, a particular region from which the multipath pulses are scattered over the irregular terrain can be taken as a scattering center. In fact, a multipath scattering center may be approximated as multiple reflection points visible to the receiver. For this reason, an uncertainty in location of multipath scattering centers is expected. However, as proposed in this study, the likelihood of a particular region from which the multipath pulses are scattered may be identified if digital data of the irregular terrain, positions of the receiver and the transmitter, and Angle of Arrival (AOA) of the multipath are provided. In this context, this study attempts to provide an approach for identifying the likelihood of a particular region being a scattering center over the irregular terrain. To this end, Geometric Optics (GO)-based wave propagation principles are exploited to estimate path loss that would a basis for estimating likelihoods. Simulations are performed to illustrate the effectiveness of the proposed approach. This study aims to make significant contribution to an ongoing research on passive localization of radar emitters by exploiting multipath in dense scattering environments. © 2017 Association for Computing Machinery.

Description

Keywords

Diffuse scattering, Geometric optics, Geometrical theory of diffraction, Multipath exploitation, Passive localization, Scattering center

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Scopus Q

OpenCitations Logo
OpenCitations Citation Count
N/A

Source

ACM International Conference Proceeding Series -- 7th International Conference on Information Communication and Management, ICICM 2017 -- 28 August 2017 through 30 August 2017 -- Moscow -- 131202

Volume

Part F131202

Issue

Start Page

36

End Page

39

Collections

PlumX Metrics
Citations

Scopus : 1

Captures

Mendeley Readers : 3

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.28470147

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo