Assessment of Polybenzimidazole/Mof Composite Membranes for the Improvement of High-Temperature Pem Fuel Cell Performance
dc.authorscopusid | 11139445500 | |
dc.authorscopusid | 55664752100 | |
dc.contributor.author | Devrim,Y. | |
dc.contributor.author | Colpan,C.O. | |
dc.contributor.other | Energy Systems Engineering | |
dc.date.accessioned | 2024-07-05T15:50:41Z | |
dc.date.available | 2024-07-05T15:50:41Z | |
dc.date.issued | 2024 | |
dc.department | Atılım University | en_US |
dc.department-temp | Devrim Y., Atılım University, Department of Energy Systems Engineering, Ankara, Turkey; Colpan C.O., Dokuz Eylul University, Department of Mechanical Engineering, Izmir, Turkey | en_US |
dc.description.abstract | This study aims to determine the most effective utilization of ZIF-8 type metal-organic framework (MOF) doped polybenzimidazole (PBI) composite membrane in high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) and investigate how ZIF-8 filler affects performance. ZIF-8 particles were prepared by solvothermal method and added to the PBI polymer using a weight percentage varying from 1 to 5 %. XRD, BET, and TEM examined the prepared ZIF-8. Composite membrane properties were investigated by XRD, SEM analysis, proton conductivity measurements, acid doping, and acid stripping tests. The HT-PEMFC performances of the membranes were carried out using Hydrogen and dry air at 150–180. The highest performance was acquired with the composite ZIF8/PBI-2 membrane as 0.432 W/cm2 at 170 °C. The obtained result is explained by easier proton transfer over ZIF-8's enlarged tunnel network. This study proposes a promising strategy to use ZIF-8 to prepare a PBI composite membrane with excellent proton conductivity, acid doping, and low acid leaching for HT-PEMFC application. The current study's findings can support future research on PBI/MOF-based composite membranes for HT-PEMFC applications. © 2024 Hydrogen Energy Publications LLC | en_US |
dc.identifier.citationcount | 1 | |
dc.identifier.doi | 10.1016/j.ijhydene.2024.01.184 | |
dc.identifier.endpage | 478 | en_US |
dc.identifier.issn | 0360-3199 | |
dc.identifier.scopus | 2-s2.0-85185169546 | |
dc.identifier.startpage | 470 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.ijhydene.2024.01.184 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/4165 | |
dc.identifier.volume | 58 | en_US |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Devrim, Yılser | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartof | International Journal of Hydrogen Energy | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 16 | |
dc.subject | Composite membranes | en_US |
dc.subject | High-temperature PEM fuel cell | en_US |
dc.subject | Polybenzimidazole | en_US |
dc.subject | Proton conductivity | en_US |
dc.subject | ZIF-8 | en_US |
dc.title | Assessment of Polybenzimidazole/Mof Composite Membranes for the Improvement of High-Temperature Pem Fuel Cell Performance | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d9a1d14f-b12f-40ca-a17d-175c6f9c882a | |
relation.isAuthorOfPublication.latestForDiscovery | d9a1d14f-b12f-40ca-a17d-175c6f9c882a | |
relation.isOrgUnitOfPublication | 80f84cab-4b75-401b-b4b1-f2ec308f3067 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 80f84cab-4b75-401b-b4b1-f2ec308f3067 |