On the Approximation of Analytic Functions by the Q-Bernstein Polynomials in the Case Q > 1

dc.authorscopusid35610828900
dc.contributor.authorOstrovska,S.
dc.contributor.otherMathematics
dc.date.accessioned2024-10-06T11:14:09Z
dc.date.available2024-10-06T11:14:09Z
dc.date.issued2010
dc.departmentAtılım Universityen_US
dc.department-tempOstrovska S., Department of Mathematics, Atilim University, Incek 06836 Ankara, Turkeyen_US
dc.description.abstractSince for q > 1, the q-Bernstein polynomials Bn,q are not positive linear operators on C[0, 1], the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. In this paper, new results on the approximation of continuous functions by the q-Bernstein polynomials in the case q > 1 are presented. It is shown that if f Ε C[0, 1] and admits an analytic continuation f(z) into {z : |z| < a}, then Bn,q (f; z) → f(z) as n → λ, uniformly on any compact set in {z : |z| < a}. Copyright © 2010, Kent State University.en_US
dc.identifier.citationcount7
dc.identifier.endpage112en_US
dc.identifier.issn1068-9613
dc.identifier.scopus2-s2.0-77955425049
dc.identifier.scopusqualityQ3
dc.identifier.startpage105en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/9246
dc.identifier.volume37en_US
dc.identifier.wosqualityQ3
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherKent State Universityen_US
dc.relation.ispartofElectronic Transactions on Numerical Analysisen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount7
dc.subjectQ-Bernstein polynomialsen_US
dc.subjectQ-binomial coefficientsen_US
dc.subjectQ-integersen_US
dc.subjectUniform convergenceen_US
dc.titleOn the Approximation of Analytic Functions by the Q-Bernstein Polynomials in the Case Q > 1en_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections