On the Approximation of Analytic Functions by the Q-Bernstein Polynomials in the Case Q > 1
| dc.contributor.author | Ostrovska,S. | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-10-06T11:14:09Z | |
| dc.date.available | 2024-10-06T11:14:09Z | |
| dc.date.issued | 2010 | |
| dc.description.abstract | Since for q > 1, the q-Bernstein polynomials Bn,q are not positive linear operators on C[0, 1], the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. In this paper, new results on the approximation of continuous functions by the q-Bernstein polynomials in the case q > 1 are presented. It is shown that if f Ε C[0, 1] and admits an analytic continuation f(z) into {z : |z| < a}, then Bn,q (f; z) → f(z) as n → λ, uniformly on any compact set in {z : |z| < a}. Copyright © 2010, Kent State University. | en_US |
| dc.identifier.issn | 1068-9613 | |
| dc.identifier.scopus | 2-s2.0-77955425049 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/9246 | |
| dc.language.iso | en | en_US |
| dc.publisher | Kent State University | en_US |
| dc.relation.ispartof | Electronic Transactions on Numerical Analysis | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Q-Bernstein polynomials | en_US |
| dc.subject | Q-binomial coefficients | en_US |
| dc.subject | Q-integers | en_US |
| dc.subject | Uniform convergence | en_US |
| dc.title | On the Approximation of Analytic Functions by the Q-Bernstein Polynomials in the Case Q > 1 | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ostrovska, Sofiya | |
| gdc.author.scopusid | 35610828900 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | Ostrovska S., Department of Mathematics, Atilim University, Incek 06836 Ankara, Turkey | en_US |
| gdc.description.endpage | 112 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 105 | en_US |
| gdc.description.volume | 37 | en_US |
| gdc.description.wosquality | Q3 | |
| gdc.scopus.citedcount | 7 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |