Using Advanced Machine Learning Techniques to Predict the Sales Volume of Non-Fungible Tokens

dc.contributor.authorÇamalan, Özge
dc.contributor.authorGökmen, Şahika
dc.contributor.authorAtan, Sibel
dc.contributor.otherEconomics
dc.date.accessioned2024-09-10T21:40:42Z
dc.date.available2024-09-10T21:40:42Z
dc.date.issued2024
dc.departmentAtılım Universityen_US
dc.department-tempATILIM ÜNİVERSİTESİ,ANKARA HACI BAYRAM VELİ ÜNİVERSİTESİ,ANKARA HACI BAYRAM VELİ ÜNİVERSİTESİen_US
dc.description.abstractNon-fungible tokens (NFTs) are a type of digital asset based on blockchain that contain unique codes verifying the authenticity and ownership of different assets such as art pieces, music, gaming items, collections, and so on. This phenomenon and its markets have grown significantly since the beginning of 2021. This study, using daily data between November 2017 and November 2022, predicts the volume of NFT sales by utilising Random Forest (RF), GBM, XGBoost, and LightGBM methods from the community machine learning methods. In the predictions, several financial variables, including Gold, Bitcoin/USD, Ethereum/USD, S&P 500 index, Nasdaq 100, Oil/USD, Euro/USD, and CDS data, are treated as independent variables. According to the results, XGBoost is found to be the best prediction method for NFT market volume estimation concerning several statistical criteria, e.g., MAE, MAPE, and RMSE, and the most significant influential feature in determining prices is the Ethereum/USD exchange rate.en_US
dc.identifier.citation0
dc.identifier.doi10.22440/wjae.10.1.2
dc.identifier.endpage27en_US
dc.identifier.issn2459-0126
dc.identifier.issue1en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage17en_US
dc.identifier.trdizinid1240773
dc.identifier.urihttps://doi.org/10.22440/wjae.10.1.2
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1240773/using-advanced-machine-learning-techniques-to-predict-the-sales-volume-of-non-fungible-tokens
dc.identifier.urihttps://hdl.handle.net/20.500.14411/7634
dc.identifier.volume10en_US
dc.identifier.wosqualityN/A
dc.institutionauthorÇamalan, Özge
dc.language.isoenen_US
dc.relation.ispartofWorld Journal of Applied Economicsen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleUsing Advanced Machine Learning Techniques to Predict the Sales Volume of Non-Fungible Tokensen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication6da28024-36a7-40cb-9529-5449feccf522
relation.isAuthorOfPublication.latestForDiscovery6da28024-36a7-40cb-9529-5449feccf522
relation.isOrgUnitOfPublicationf17c3770-9c6e-4de2-90e7-73c30275c2f9
relation.isOrgUnitOfPublication.latestForDiscoveryf17c3770-9c6e-4de2-90e7-73c30275c2f9

Files

Collections