Using Advanced Machine Learning Techniques To Predict the Sales Volume of Non-Fungible Tokens

dc.contributor.author Çamalan, Özge
dc.contributor.author Gökmen, Şahika
dc.contributor.author Atan, Sibel
dc.contributor.other Economics
dc.date.accessioned 2024-09-10T21:40:42Z
dc.date.available 2024-09-10T21:40:42Z
dc.date.issued 2024
dc.department Atılım University en_US
dc.department-temp ATILIM ÜNİVERSİTESİ,ANKARA HACI BAYRAM VELİ ÜNİVERSİTESİ,ANKARA HACI BAYRAM VELİ ÜNİVERSİTESİ en_US
dc.description.abstract Non-fungible tokens (NFTs) are a type of digital asset based on blockchain that contain unique codes verifying the authenticity and ownership of different assets such as art pieces, music, gaming items, collections, and so on. This phenomenon and its markets have grown significantly since the beginning of 2021. This study, using daily data between November 2017 and November 2022, predicts the volume of NFT sales by utilising Random Forest (RF), GBM, XGBoost, and LightGBM methods from the community machine learning methods. In the predictions, several financial variables, including Gold, Bitcoin/USD, Ethereum/USD, S&P 500 index, Nasdaq 100, Oil/USD, Euro/USD, and CDS data, are treated as independent variables. According to the results, XGBoost is found to be the best prediction method for NFT market volume estimation concerning several statistical criteria, e.g., MAE, MAPE, and RMSE, and the most significant influential feature in determining prices is the Ethereum/USD exchange rate. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.22440/wjae.10.1.2
dc.identifier.endpage 27 en_US
dc.identifier.issn 2459-0126
dc.identifier.issue 1 en_US
dc.identifier.startpage 17 en_US
dc.identifier.trdizinid 1240773
dc.identifier.uri https://doi.org/10.22440/wjae.10.1.2
dc.identifier.uri https://search.trdizin.gov.tr/tr/yayin/detay/1240773/using-advanced-machine-learning-techniques-to-predict-the-sales-volume-of-non-fungible-tokens
dc.identifier.uri https://hdl.handle.net/20.500.14411/7634
dc.identifier.volume 10 en_US
dc.institutionauthor Çamalan, Özge
dc.language.iso en en_US
dc.relation.ispartof World Journal of Applied Economics en_US
dc.relation.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Using Advanced Machine Learning Techniques To Predict the Sales Volume of Non-Fungible Tokens en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 6da28024-36a7-40cb-9529-5449feccf522
relation.isAuthorOfPublication.latestForDiscovery 6da28024-36a7-40cb-9529-5449feccf522
relation.isOrgUnitOfPublication f17c3770-9c6e-4de2-90e7-73c30275c2f9
relation.isOrgUnitOfPublication.latestForDiscovery f17c3770-9c6e-4de2-90e7-73c30275c2f9

Files

Collections