On stress-strength reliability with a time-dependent strength

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

The study of stress-strength reliability in a time-dependent context needs to model at least one of the stress or strength quantities as dynamic. We study the stress-strength reliability for the case in which the strength of the system is decreasing in time and the stress remains fixed over time; that is, the strength of the system is modeled as a stochastic process and the stress is considered to be a usual random variable. We present stochastic ordering results among the lifetimes of the systems which have the same strength but are subjected to different stresses. Multicomponent form of the aforementioned stress-strength interference is also considered. We illustrate the results for the special case when the strength is modeled by a Weibull process. © 2013 Serkan Eryilmaz.

Description

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

23

WoS Q

Scopus Q

Source

Journal of Quality and Reliability Engineering

Volume

Issue

Start Page

End Page

Collections