Text Categorization With Ila

dc.authoridTolun, Mehmet Resit/0000-0002-8478-7220
dc.authoridSever, Hayri/0000-0002-8261-0675
dc.authorwosidGörür, Abdül Kadir/AAY-1590-2021
dc.authorwosidTolun, Mehmet/AAX-2456-2021
dc.authorwosidTolun, Mehmet Resit/KCJ-5958-2024
dc.contributor.authorSever, H
dc.contributor.authorGorur, A
dc.contributor.authorTolun, MR
dc.date.accessioned2024-10-06T10:57:31Z
dc.date.available2024-10-06T10:57:31Z
dc.date.issued2003
dc.departmentAtılım Universityen_US
dc.department-tempBaskent Univ, Dept Comp Engn, TR-06530 Ankara, Turkey; Eastern Mediterranean Univ, Dept Comp Engn, Famagusta, Turkey; Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkeyen_US
dc.descriptionTolun, Mehmet Resit/0000-0002-8478-7220; Sever, Hayri/0000-0002-8261-0675en_US
dc.description.abstractThe sudden expansion of the web and the use of the internet has caused some research fields to regain (or even increase) its old popularity. Of them, text categorization aims at developing a classification system for assigning a number of predefined topic codes to the documents based on the knowledge accumulated in the training process. We propose a framework based on an automatic inductive classifier, called ILA, for text categorization, though this attempt is not a novel approach to the information retrieval community. Our motivation are two folds. One is that there is still much to do for efficient and effective classifiers. The second is of ILA's (Inductive Learning Algorithm) well-known ability in capturing by canonical rules the distinctive features of text categories. Our results with respect to the Reuters 21578 corpus indicate (1) the reduction of features by information gain measurement down to 20 is essentially as good as the case where one would have more features; (2) recall/precision breakeven points of our algorithm without tuning over top 10 categories are comparable to other text categorization methods, namely similarity based matching, naive Bayes, Bayes nets, decision trees, linear support vector machines, steepest descent algorithm.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science - Science Citation Index Expanded
dc.identifier.citationcount2
dc.identifier.endpage307en_US
dc.identifier.isbn3540204091
dc.identifier.issn0302-9743
dc.identifier.scopusqualityQ3
dc.identifier.startpage300en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/8728
dc.identifier.volume2869en_US
dc.identifier.wosWOS:000188096800038
dc.language.isoenen_US
dc.publisherSpringer-verlag Berlinen_US
dc.relation.ispartof18th International Symposium on Computer and Information Sciences (ISCIS 2003) -- NOV 03-05, 2003 -- ANTALYA, TURKEYen_US
dc.relation.ispartofseriesLECTURE NOTES IN COMPUTER SCIENCE
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjecttext categorizationen_US
dc.subjectinductive learningen_US
dc.subjectfeature selectionen_US
dc.titleText Categorization With Ilaen_US
dc.typeConference Objecten_US
dc.wos.citedbyCount2
dspace.entity.typePublication

Files

Collections