Method Proposal for Distinction of Microscope Objectives on Hemocytometer Images
dc.authorid | Isgor, belgin S/0000-0001-5716-3159 | |
dc.authorid | Sengul, Gokhan/0000-0003-2273-4411 | |
dc.authorwosid | Şengül, Gökhan/AAA-2788-2022 | |
dc.authorwosid | ISGOR, Belgin/B-7829-2013 | |
dc.contributor.author | Ozkan, Akin | |
dc.contributor.author | Isgor, S. Belgin | |
dc.contributor.author | Sengul, Gokhan | |
dc.contributor.other | Chemical Engineering | |
dc.contributor.other | Computer Engineering | |
dc.contributor.other | Department of Electrical & Electronics Engineering | |
dc.date.accessioned | 2024-10-06T11:12:27Z | |
dc.date.available | 2024-10-06T11:12:27Z | |
dc.date.issued | 2016 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Ozkan, Akin] Atilim Univ, Elekt & Elekt Muhendisligi Bolumu, Ankara, Turkey; [Isgor, S. Belgin] Atilim Univ, Kimya Muhendisligi & Uygulamali Kimya Bolumu, Ankara, Turkey; [Sengul, Gokhan] Atilim Univ, Bilgisayar Muhendisligi Bolumu, Ankara, Turkey | en_US |
dc.description | Isgor, belgin S/0000-0001-5716-3159; Sengul, Gokhan/0000-0003-2273-4411 | en_US |
dc.description.abstract | Hemocytometer is a special glass plate apparatus used for cell counting that has straight lines (counting chamber) in certain size. Leveraging this special lam and microscope, a cell concentration on an available cell suspension can be estimated. The automation process of hemocytometer images will assist several research disciplines to improve consistency of results and to reduce human labor. Different objective measurements can be utilized to analyze a cell sample on microscope. These differences affect the detail of image content. Basically, while the objective value is getting increased, image scale and detail level taken from image will increase, yet visible area becomes narrower. Due to this variation, different self-cell counting approaches should be developed for images taken with different objective values. In this paper, using the hemocytometer images gathered from a microscope, a novel approach is introduced for which can estimate objective values of a microscope with machine learning methods automatically. For this purpose, a frequency-based visual feature is proposed which embraces hemocytometer structure well. As a result of the conducted tests, %100 distinction accuracy is achieved with the proposed method. | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
dc.identifier.citation | 1 | |
dc.identifier.doi | [WOS-DOI-BELIRLENECEK-190] | |
dc.identifier.endpage | 1308 | en_US |
dc.identifier.isbn | 9781509016792 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 1305 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/9149 | |
dc.identifier.wos | WOS:000391250900303 | |
dc.identifier.wosquality | N/A | |
dc.institutionauthor | Özkan, Akın | |
dc.institutionauthor | İşgör, Sultan Belgin | |
dc.institutionauthor | Şengül, Gökhan | |
dc.language.iso | tr | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 24th Signal Processing and Communication Application Conference (SIU) -- MAY 16-19, 2016 -- Zonguldak, TURKEY | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Hemocytometer | en_US |
dc.subject | Microscope Objective Distinction | en_US |
dc.subject | Visual Feature Extraction | en_US |
dc.title | Method Proposal for Distinction of Microscope Objectives on Hemocytometer Images | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f399fa5d-a26e-401f-84b2-4e77e16bc0a7 | |
relation.isAuthorOfPublication | 8b4f43cd-ab34-4c90-b940-b1cddf5df5ad | |
relation.isAuthorOfPublication | f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b | |
relation.isAuthorOfPublication.latestForDiscovery | f399fa5d-a26e-401f-84b2-4e77e16bc0a7 | |
relation.isOrgUnitOfPublication | bebae599-17cc-4f0b-997b-a4164a19b94b | |
relation.isOrgUnitOfPublication | e0809e2c-77a7-4f04-9cb0-4bccec9395fa | |
relation.isOrgUnitOfPublication | c3c9b34a-b165-4cd6-8959-dc25e91e206b | |
relation.isOrgUnitOfPublication.latestForDiscovery | bebae599-17cc-4f0b-997b-a4164a19b94b |