Theoretical Investigation of Carbon Dioxide Capture by Aqueous Boric Acid Solution: a Termolecular Reaction Mechanism

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Chemical Engineering
(2010)
Established in 2010, and aiming to train the students with the capacity to meet the demands of the 21st Century, the Chemical Engineering Department provides a sound chemistry background through intense coursework and laboratory practices, along with fundamental courses such as Physics and Mathematics within the freshman and sophomore years, following preparatory English courses.In the final two years of the program, engineering courses are offered with laboratory practice and state-of-the-art simulation programs, combining theory with practice.

Journal Issue

Events

Abstract

Hitherto, boric is suggested and used as a promoter or catalyst for carbondioxide capture in various chemical absorption reactions, such as, absorptionby aqueous potassium carbonate solution to increase mass transfer rate. Butin this study, a single step termolecular reaction mechanism is suggested forthe chemical absorption of carbon dioxide directly by boric acid and water. Thereaction thermochemistry and reaction kinetics for termolecular mechanism areinvestigated by using density functional theory calculations at the B3LYP/6-31G(d)level of theory by taking into account of the implicit solvent effects of water throughthe polarizable continuum model and dispersion corrections. The findings obtainedfrom theoretical calculations indicate that it is possible to capture carbon dioxidewith boric acid in the form of B(OH)2OCOOH.

Description

Keywords

Maden İşletme ve Cevher Hazırlama, Mühendislik, Jeoloji

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Q4

Source

BOR DERGİSİ

Volume

3

Issue

1

Start Page

1

End Page

7

Collections