Reinforcement Learning for Intrusion Detection

dc.authorscopusid 58160749000
dc.authorscopusid 14632851900
dc.contributor.author Saad,A.M.S.E.
dc.contributor.author Yildiz,B.
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T15:50:41Z
dc.date.available 2024-07-05T15:50:41Z
dc.date.issued 2023
dc.department Atılım University en_US
dc.department-temp Saad A.M.S.E., Texas A &M University-Corpus Christi, Corpus Christi, 78412, TX, United States; Yildiz B., Atilim University, Ankara, Turkey en_US
dc.description.abstract Network-based technologies such as cloud computing, web services, and Internet of Things systems are becoming widely used due to their flexibility and preeminence. On the other hand, the exponential proliferation of network-based technologies exacerbated network security concerns. Intrusion takes an important share in the security concerns surrounding network-based technologies. Developing a robust intrusion detection system is crucial to solving the intrusion problem and ensuring the secure delivery of network-based technologies and services. In this paper, we propose a novel approach using deep reinforcement learning to detect intrusions to make network applications more secure, reliable, and efficient. As for the reinforcement learning approach, Deep Q-learning is used alongside a custom-built Gym environment that mimics network attacks and guides the learning process. The NSL-KDD dataset is used to create the reinforcement learning environment to train and evaluate the proposed model. The experimental results show that our proposed reinforcement learning approach outperforms other related solutions in the literature, achieving an accuracy that exceeds 93%. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/978-3-031-27099-4_18
dc.identifier.endpage 243 en_US
dc.identifier.isbn 978-303127098-7
dc.identifier.issn 2367-3370
dc.identifier.scopus 2-s2.0-85151057781
dc.identifier.scopusquality Q4
dc.identifier.startpage 230 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-031-27099-4_18
dc.identifier.uri https://hdl.handle.net/20.500.14411/4158
dc.identifier.volume 643 LNNS en_US
dc.institutionauthor Yıldız, Beytullah
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Lecture Notes in Networks and Systems -- International Conference on Computing, Intelligence and Data Analytics, ICCIDA 2022 -- 16 September 2022 through 17 September 2022 -- Kocaeli -- 291929 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Deep Q-learning en_US
dc.subject Intrusion detection system en_US
dc.subject Machine learning en_US
dc.subject Network security en_US
dc.subject OpenAI Gym en_US
dc.subject Reinforcement learning en_US
dc.title Reinforcement Learning for Intrusion Detection en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication.latestForDiscovery 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections