Reinforcement Learning for Intrusion Detection

dc.authorscopusid58160749000
dc.authorscopusid14632851900
dc.contributor.authorSaad,A.M.S.E.
dc.contributor.authorYildiz,B.
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T15:50:41Z
dc.date.available2024-07-05T15:50:41Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-tempSaad A.M.S.E., Texas A &M University-Corpus Christi, Corpus Christi, 78412, TX, United States; Yildiz B., Atilim University, Ankara, Turkeyen_US
dc.description.abstractNetwork-based technologies such as cloud computing, web services, and Internet of Things systems are becoming widely used due to their flexibility and preeminence. On the other hand, the exponential proliferation of network-based technologies exacerbated network security concerns. Intrusion takes an important share in the security concerns surrounding network-based technologies. Developing a robust intrusion detection system is crucial to solving the intrusion problem and ensuring the secure delivery of network-based technologies and services. In this paper, we propose a novel approach using deep reinforcement learning to detect intrusions to make network applications more secure, reliable, and efficient. As for the reinforcement learning approach, Deep Q-learning is used alongside a custom-built Gym environment that mimics network attacks and guides the learning process. The NSL-KDD dataset is used to create the reinforcement learning environment to train and evaluate the proposed model. The experimental results show that our proposed reinforcement learning approach outperforms other related solutions in the literature, achieving an accuracy that exceeds 93%. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.identifier.citation0
dc.identifier.doi10.1007/978-3-031-27099-4_18
dc.identifier.endpage243en_US
dc.identifier.isbn978-303127098-7
dc.identifier.issn2367-3370
dc.identifier.scopus2-s2.0-85151057781
dc.identifier.scopusqualityQ4
dc.identifier.startpage230en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-031-27099-4_18
dc.identifier.urihttps://hdl.handle.net/20.500.14411/4158
dc.identifier.volume643 LNNSen_US
dc.institutionauthorYıldız, Beytullah
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Networks and Systems -- International Conference on Computing, Intelligence and Data Analytics, ICCIDA 2022 -- 16 September 2022 through 17 September 2022 -- Kocaeli -- 291929en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Q-learningen_US
dc.subjectIntrusion detection systemen_US
dc.subjectMachine learningen_US
dc.subjectNetwork securityen_US
dc.subjectOpenAI Gymen_US
dc.subjectReinforcement learningen_US
dc.titleReinforcement Learning for Intrusion Detectionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication.latestForDiscovery8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections