Daha İyi Dağıtımla İyileştirilmiş Dengesiz Veriler Üzerinde Derin Öğrenme ile Verimli Metin Sınıflandırması
No Thumbnail Available
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
GOLD
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Teknolojik gelişmeler ve internetin yaygınlaşması, günlük olarak üretilen verilerin katlanarak artmasına neden olmaktadır.\rBu veri tufanının önemli bir kısmı sosyal medya, iletişim araçları, müşteri hizmetleri gibi uygulamalardan gelen metin\rverilerinden kaynaklanmaktadır. Bu büyük miktarda metin verisinin işlenmesi otomasyona ihtiyaç duymaktadır. Son\rzamanlarda metin işlemede önemli başarılar elde edilmiştir. Özellikle derin öğrenme uygulamaları ile metin sınıflandırma\rperformansı oldukça tatmin edici hale gelmiştir. Bu çalışmada, metin sınıflandırma başarısını daha da artırmak için veri\rdengesizliği sorununu azaltan yenilikçi bir veri dağıtım algoritması önerdik. Deney sonuçları, veri dağılımını optimize eden\ralgoritma ile sınıflandırma doğruluğunda yaklaşık %3,5 ve F1 puanında 3'ün üzerinde bir iyileşme olduğunu göstermektedir.
Description
Keywords
Engineering, Text classification;Data Imbalance;Data Distribution;Deep learning;Word Embedding., Mühendislik
Turkish CoHE Thesis Center URL
Fields of Science
0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Citation
WoS Q
Scopus Q

OpenCitations Citation Count
8
Source
Turkish Journal of Science & Technology
Volume
17
Issue
1
Start Page
89
End Page
98
Collections
PlumX Metrics
Captures
Mendeley Readers : 6
Page Views
1
checked on Jan 25, 2026
Google Scholar™

OpenAlex FWCI
2.15378702
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

5
GENDER EQUALITY

7
AFFORDABLE AND CLEAN ENERGY

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES

14
LIFE BELOW WATER

16
PEACE, JUSTICE AND STRONG INSTITUTIONS


