Soyutlayıcı Özetlemek, Benzerlik, Gereklilik, ve Kabul Edilebilirliği Kullanan Kapsamlı Değerlendirme Metriği

Loading...
Thumbnail Image

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Uzun metinlerden otomatik olarak anlamlı özetler üretmek, birçok alanda büyük önem taşımaktadır. Transformer modeli gibi yeni sinir ağı mimarilerinin ortaya çıkması, kaliteli özetler üretebilen çok sayıda büyük dil modellerinin gelişmesine neden olmuştur. Fakat, özetleme modellerinin ürettiği özetler, önemli bir sorunu beraberinde getirmektedir. Özetleme modellerinin kalitesini ölçen, ROUGE gibi, standart otomatik değerlendirme metrikleri, kapsamlı bir değerlendirme yapmakta eksik kalmaktadır. Bu çalışmada, modeller tarafından üretilen ve insanlar tarafından yazılan örnek özetleri kullanan, SEAScore adlı yeni bir model tabanlı metrik sunuyoruz. Bu metrik, semantik benzerlik, doğal dil çıkarımı ve dilsel kabul edilebilirlik gibi çeşitli Doğal Dil İşleme yöntemlerini kullanır. Geliştirdiğimiz SEAScore metriği, daha önce eğitilmiş dil modelleri tarafından çıkarılan özellikleri kullanarak, özetleme modellerinin kalitelerini ölçen bir puan üretir. Bu tezde, üç tane özetleme modeli kullanarak yeni metriğimizin kalitesini ölçen deneyler yaptık. Deneysel sonuçlara göre, geliştirdiğimiz SEAScore metriği, bilinen standart metriklerine göre, insan tarafından üretilen değerlendirme puanları ile daha yüksek korelasyon sergileyerek başarılı sonuçlar sunmuştur.
Producing meaningful automatic summaries from long textual documents is essential in various fields. The emergence of novel neural network architectures, such as the Transformer model, has led to the development of large pre-trained language models that can produce quality summaries. However, model-generated summaries suffer from many issues. Thus, standard automatic evaluation metrics, such as the ROUGE metric, fail to effectively evaluate the quality of summarization models. In this study, we introduce SEAScore, a new model-based automatic evaluation metric that can evaluate model-generated summaries against their counterpart reference summaries by utilizing multiple Natural Language Processing tasks such as Semantic Similarity, Natural Language Inference, and Linguistic Acceptability. SEAScore takes features extracted by pre-trained language models and produces an evaluation score to measure the quality of summarization models. In this thesis, we develop our new evaluation metric SEAScore and train three summarization models to assess our new metric. Experimental results show that SEAScore correlates better with human judgment than some standard metrics.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control, Derin öğrenme, Deep learning

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

123

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo