Makine öğrenme yöntemleriyle kalp hastalıklarını tahmin etme
Loading...
Date
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Kalp hastalıkları dünyada bir numaralı ölüm nedeni olarak sıralanmaktad, Bu tezin amacı kalp hastalığı tahmin etmek için gürbüz bir yöntem bulmaktır. UCI makine öğrenme veritabanından elde edilen 297 vaka, 14 nitelik ve 2 sınıf içeren bir veriseti kullanılmıştır. Bu tez çalışmasında kalp hastalığı tahmin etmek için yapay sinir ağı, destek vektör makinesi (DVM) ve k-yakın komşu gibi üç farklı makine öğrenme yöntemi işe koşulmuştur. En iyi performans yapay sinir ağları kullanıldığında elde edilmiştir. Sonuçlar tartışılmıştır.
Heart diseases are ranked as number one cause of death in the world. The aim of this thesis is to find a robust method for predicting heart disease. A dataset obtained from the UCI machine learning warehouse consisting of 297 cases and 14 features with 2 classes of attributes was used. In this thesis three different machine learning methods, namely Artificial Neural Network (ANN), Support Vector Machine (SVM) and K-nearest neighbor (KNN) were used to predict heart disease. The best performance was obtained when ANN was used. The results have been discussed.
Heart diseases are ranked as number one cause of death in the world. The aim of this thesis is to find a robust method for predicting heart disease. A dataset obtained from the UCI machine learning warehouse consisting of 297 cases and 14 features with 2 classes of attributes was used. In this thesis three different machine learning methods, namely Artificial Neural Network (ANN), Support Vector Machine (SVM) and K-nearest neighbor (KNN) were used to predict heart disease. The best performance was obtained when ANN was used. The results have been discussed.
Description
Keywords
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control, Maden Mühendisliği ve Madencilik, Mining Engineering and Mining
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
0
End Page
90