Some Examples in Cogalois Theory With Applications To Elementary Fleld Arithmetic

dc.contributor.author Albu, Toma
dc.date.accessioned 2024-07-05T15:08:53Z
dc.date.available 2024-07-05T15:08:53Z
dc.date.issued 2002
dc.description.abstract The aim of this paper is to provide some examples in Cogalois Theory showing that the property of a field extension to be radical (resp. Kneser, or Cogalois) is not transitive and is not inherited by subextensions. Our examples refer especially to extensions of type Q(root r + root d)/Q. We also effectively calculate the Cogalois groups of these extensions. A series of applications to elementary arithmetic of fields, like: for what n, d is an element of N* is root n + root d a sum of radicals of positive rational numbers when is (n0)root a(0) a finite sum of monomials of form c center dot(n1)root a(1)(j1) ... (nr)root a(r)(jr), where r, j(1), ... , j(r) is an element of N*, c is an element of Q*, and a(0), ... , a(r) is an element of Q(+)(*) are also presented. en_US
dc.description.sponsorship Alexander von Humboldt Foundation; Consiliul National al Cercetarii Stiintifice din invatamantul Superior, Romania en_US
dc.description.sponsorship This work was completed during the author's stay at the Heinrich-Heine University of Dusseldorf as a Humboldt Fellow in April-June 2001. He is very indebted to the University for hospitality and to the Alexander von Humboldt Foundation for financial support. He gratefully acknowledges partial support from grant D-7 awarded by the Consiliul National al Cercetarii Stiintifice din invatamantul Superior, Romania. The author would like to thank Marcel Tena for simplifying the original proofs of Proposition 3.1(e) and Proposition 5.2(a), and Laurentiu Panaitopol for helpful discussions. The author would also like to thank the referee for his/her careful reading of the manuscript and helpful suggestions. en_US
dc.identifier.doi 10.1142/S0219498802000021
dc.identifier.issn 0219-4988
dc.identifier.issn 1793-6829
dc.identifier.uri https://doi.org/10.1142/S0219498802000021
dc.identifier.uri https://hdl.handle.net/20.500.14411/1117
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.ispartof Journal of Algebra and Its Applications
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Elementary arithmetic en_US
dc.subject field extension en_US
dc.subject Galois extension en_US
dc.subject radical extension en_US
dc.subject Kneser extension en_US
dc.subject Cogalois extension en_US
dc.title Some Examples in Cogalois Theory With Applications To Elementary Fleld Arithmetic en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C5
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Albu, Toma] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 29 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1 en_US
gdc.description.volume 1 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W2008114823
gdc.identifier.wos WOS:000209819600001
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 3.47749E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Kneser extensions
gdc.oaire.keywords Algebraic field extensions
gdc.oaire.keywords radical extensions
gdc.oaire.keywords Field arithmetic
gdc.oaire.keywords Separable extensions, Galois theory
gdc.oaire.keywords Galois theory
gdc.oaire.keywords quartic extensions of the field of rational numbers
gdc.oaire.keywords Special polynomials in general fields
gdc.oaire.keywords cogalois extensions
gdc.oaire.popularity 3.3973496E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 2.95298757
gdc.openalex.normalizedpercentile 0.87
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 6
gdc.plumx.crossrefcites 6
gdc.wos.citedcount 6
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 50be38c5-40c4-4d5f-b8e6-463e9514c6dd

Files

Collections