Lazer kaynaklı kırılma spektroskopisiyle farmasötik ve mineral numuneleri üzerinde PCA kombine makine öğrenme tekniklerine ön işleme yapılmasının performans değerlendirmesi

Loading...
Thumbnail Image

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Electrical-Electronics Engineering
The Department of Electrical and Electronics Engineering covers communications, signal processing, high voltage, electrical machines, power distribution systems, radar and electronic warfare, RF, electromagnetic and photonics topics. Most of the theoretical courses in our department are supported by qualified laboratory facilities. Our department has been accredited by MÜDEK since 2013. Within the scope of joint training (COOP), in-company training opportunities are offered to our students. 9 different companies train our students for one semester within the scope of joint education and provide them with work experience. The number of students participating in joint education (COOP) is increasing every year. Our students successfully completed the joint education program that started in the 2019-2020 academic year and started work after graduation. Our department, which provides pre-graduation opportunities to its students with Erasmus, joint education (COOP) and undergraduate research projects, has made an agreement with Upper Austria University of Applied Sciences (Austria) starting from this year and offers its students undergraduate (Atılım University) and master's (Upper Austria) degrees with 3+2 education program. Our department, which has the only European Remote Radio Laboratory in Foundation Universities, has a pioneering position in research (publication, project, patent).

Journal Issue

Abstract

Lazerle indüklenen kırılma spektroskopisi (LIBS), malzeme tanımlama ve analiz için kullanılan hızlı bir optik atomik emisyon spektroskopisidir. Yerinde analiz, titiz numune işlemenin kaldırılması ve değerlendirilmekte olan madde için mikro yıkıcı özelliklerin avantajlarına sahiptir. LIBS, malzemeyi belirli bir eşiğe uyarmak için kısa lazer ışını patlamaları kullanır ve bu plazma oluşumuyla sonuçlanır. Dalga boyu değeri ve yoğunluk genliğini içeren plazma özellikleri, deneyin malzemesi ve çevresinden etkilenir. Bu çalışmada LIBS kullanılarak ilaç ve mineral örneklerinin spektrum profilleri elde edilmiştir. Farmasötik numunelerin toplanması, her iki parasetamol bazlı ilacın, Aferin ve Parafon'un iki farklı konsantrasyonundan oluşur. Alüminyum (Al), Bizmut (Bi), Bakır (Cu), Demir (Fe), Manganez (Mn), NikelAlüminyum (NiAl), Kalay (Sn), Çinko (Zn) mineral verisetindeki numunelerdir. Numunelerin spektrum verileri, eksik değerlerin şekli koruyan parçalı kübik spline enterpolasyonu ile değiştirilmesi, çeyreklere dayalı aykırı değerlerin doldurulması, gürültüyü gidermek için spektrumların yumuşatılması ve hem dalga boyu hem devi yoğunluk eksenlerinin normalleştirilmesiyle veri ön işleme yöntemlerine tabi tutulmuştur. İstatistiksel bilgiler elde edilmiş, ve hem önceden işlenmiş hem de ham veri kümeleri temel bileşen analizine (PCA) tabi tutulmuştur. Makine öğrenimi modelleri, iki farklı eğitim testi bölümü kullanılarak oluşturulmuştur: %70 eğitim - %30 test ve %80 eğitim - %20 test. Modellerin aşırı uyumlanmasını önlemek için çapraz doğrulama kullanılmış olup, bu nedenle örnek boyutu minimumdur. Her iki bölümün de önceden işlenmiş ve ham veri kümelerinden elde edilen makine öğrenimi sonuçları karşılaştırılmıştır. Karar Ağaçları, Diskriminant, Naïve Bayes, Destek Vektör Makineleri (SVM), k-NN(k-En Yakın Komşu) Topluluk Öğrenmesi ve Sinir Ağı algoritmalarından oluşan; hem parasetamol bazlı farmasötik numunelerin hem de 8 farklı mineral numunelerin LIBS veri setlerine, ve bunların hem ön işlemeye tabi tutulmuş hem de ham veri setlerine, ön işlemenin etkisini gözlemlemek için uygulandığı ilk çalışmadır.
For the purpose of identifying and analyzing materials, laser-induced breakdown spectroscopy (LIBS) is a quick optical nuclear discharge spectroscopy. It has the advantages of in-situ analysis, removal of rigorous sample processing, and micro-destructive properties for the substance being evaluated. LIBS uses brief bursts of laser beams to stimulate the material to a certain threshold, resulting in plasma formation. The plasma properties, which include wavelength value and intensity amplitude, are affected by the material and the surroundings of the experiment. The spectrum profiles of medication and mineral samples were obtained using LIBS in this study. The collection of pharmaceutical samples comprises two distinct concentrations of both paracetamol-based drugs, Aferin and Parafon. Aluminum (Al), Bizmut (Bi), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel-Aluminum (NiAl), Tin (Sn), and Zinc (Zn) are among the mineral samples in the dataset. The samples' spectrum data were preprocessed by replacing missing values with shape-preserving piecewise cubic spline interpolation, filling outliers based on quartiles, smoothing spectra to remove noise, and normalizing both the wavelength and intensity axes. Statistical informationiv was acquired, and both the preprocessed and raw datasets were subjected to principal component analysis (PCA). The machine learning models were built using two distinct train-test splits: 70% training - 30% test and 80% training - 20% test. Cross-validation was employed to keep the models from being overfit, hence the sample size is small. Both splits' machine learning outcomes from preprocessed and raw datasets were compared. This is the first time that all supervised machine learning classification algorithms, including Decision Trees, Discriminant, Nave Bayes, Support Vector Machines (SVM), k-NN (k-Nearest Neighbor), Ensemble Learning, and Neural Network algorithms, have been applied to LIBS datasets of both paracetamol-based pharmaceutical samples and 8 different mineral samples, as well as their preprocessed and raw datasets, to investigate the effect of preprocessing.

Description

Keywords

Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

100