Çeşitli Taban Fonksiyonları ile Sanki-spektral Yöntemler ve Kuvantum Mekaniğe Uygulamaları
Loading...
Date
2017
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Bu çalışmada, sanki-spektral yöntemler ve onların sıradan diferansiyel denklemler ile ilgili özdeğer problemlere uygulamalarını inceledik. Özel olarak, ikinci mertebeden diferansiyel denklemleri ve belirli örnek olarak polinom potansiyelli kuvantum sistemlerin Schrödinger denklemini ele aldık. Kendine es¸ özdeğer problemleri ve polinom potansiyeline sahip parçacıkların Schrödinger denklemini tanıttıktan sonra, Lagrange interpolasyonu ve ortogonal polinomların bazı önemli özelliklerini hatırlattık. Herhangi bir dereceden bir ortogonal polinomun köklerinin bulunmasına yönelik, simetrik tridiagonal matris için özdeğer problemi kullanan bir yöntem sunduk. Hermite, Assosiye Laguerre, Chebyshev ve Legendre polinomlarının köklerinin bulunmasında kullanılan simetrik tridiagonal matrisleri oluşturduk. Bundan sonra, yayınlanmıs¸ makaleleri çalışarak, Hermite ve Assosiye Laguerre polinomları kullanan sanki-spektral formülasyon oluşturduk. Ayrıca, bağımsız değişken üzerinden dönüşüm kullanarak sonsuz aralığı sonlu aralığa dönüştürdük ve Chebyshev ile Legendre polinomları kullanan sanki-spektral formülasyon elde ettik. Özel örnek olarak, yukarıda bahsedilen dört tür ortogonal polinomları kullanan sanki-spektral yöntemleri, polinom potansiyeline sahip kuvantum sistemlerin Schrödinger denklemini çözmek için uyguladık. Elde ettiğimiz sayısal sonuçları, başka yazarlar tarafından yayınlanan sayısal sonuçlarla karşılaştırdık ve kendi yöntemimizin yeterliliği ile ilgili yorumlarda bulunduk.
In this thesis, we studied the pseudospectral methods and their application to the solution of eigenvalue problems associated with ordinary differential equations. In particular, we considered second order differential equations and a specific example, the Schrödinger equation for quantum dynamical systems with polynomial potentials. After an introduction to self adjoint eigenvalue problems and the Schrödinger equation for particles, in the presence of polynomial potentials, we recollected some important properties of Lagrange interpolation and orthogonal polynomials. We presented a method to compute the zeros of an orthogonal polynomial of arbitrary degree by means of a symmetric tridiagonal matrix eigenvalue problem. We constructed the particular symmetric tridiagonal matrices for computation of the zeros of Hermite, Associated Laguerre, Chebyshev and Legendre polynomials. After that, we explained in details the pseudospectral schemes using Hermite and Associated Laguerre polynomials by studying some published articles. We also made substitutions on the independent variable in order to transform infinite interval to a finite one and derived pseudospectral formulations using Chebyshev and Legendre polynomials. As a specific example, we applied the pseudospectral methods using the four types of orthogonal polynomials mentioned above to the Schrödinger equation for quantum dynamical systems with polynomial potentials. We compared our numerical results with the numerical results obtained previously by other authors and made comments about the efficiency of our method.
In this thesis, we studied the pseudospectral methods and their application to the solution of eigenvalue problems associated with ordinary differential equations. In particular, we considered second order differential equations and a specific example, the Schrödinger equation for quantum dynamical systems with polynomial potentials. After an introduction to self adjoint eigenvalue problems and the Schrödinger equation for particles, in the presence of polynomial potentials, we recollected some important properties of Lagrange interpolation and orthogonal polynomials. We presented a method to compute the zeros of an orthogonal polynomial of arbitrary degree by means of a symmetric tridiagonal matrix eigenvalue problem. We constructed the particular symmetric tridiagonal matrices for computation of the zeros of Hermite, Associated Laguerre, Chebyshev and Legendre polynomials. After that, we explained in details the pseudospectral schemes using Hermite and Associated Laguerre polynomials by studying some published articles. We also made substitutions on the independent variable in order to transform infinite interval to a finite one and derived pseudospectral formulations using Chebyshev and Legendre polynomials. As a specific example, we applied the pseudospectral methods using the four types of orthogonal polynomials mentioned above to the Schrödinger equation for quantum dynamical systems with polynomial potentials. We compared our numerical results with the numerical results obtained previously by other authors and made comments about the efficiency of our method.
Description
Keywords
Matematik, Mathematics
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
0
End Page
86