Permutable altgruplu bir grubun çözülebilirliği üzerine
Loading...
Date
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
İki çözülebilir grubun çarpımının çözülebililir olmayabileceği bilinmektedir. Bu tezde, V. S. Monakhov'un makalesine dayanarak $G=AB$ tipindeki sonlu grubun çözülebilirliği çalışılmıştır. Bir $G$ grubunun nilpotent ve öz-normalleyen bir altgrubu var ise, bu altgruba $G$'nin Carter altgrubu denir. $G$ grubunun süperçözülebilir bir $H$ altgrubuna $H \leq H_1 < T \leq G$ iken $|T:H_1|$ asal değildir koşulunu sağlıyor ise $G$'nin Gashutz altgrubu denir. Monakhov, Kegel-Weiland ve Kazarin'nin sonuçlarını kullanarak gösteriyor ki eğer $A$'nın her Carter altgrubu, $B$'nin her Carter altgrubu ile degişmeli ise $G=AB$ çözülebilirdir. Ayrica $G=AB$'nin çözülebilirliğini $A$'nın her Carter altgrubunun tekil mertebeli ve $B$'nin her Gashutz altgrubu ile değişmeli olmasi koşulu altında da vermektedir. Bunun yanı sıra, okuyucuya kolaylık sağlaması için tezde kullanılan Carter altgruplarının özellikleri Roger W. Carter'ın ``On nilpotent self-normalizing subgroups of soluble groups'' adlı makalesinden ispatları açıklanarak verilmiştir.
It is well-known that a product of two solvable groups need not to be solvable. In this thesis, depending on an article of V. S. Monakhov [10], the solvability of a finite group $G=AB$ is studied. A subgroup $K$ of a group $G$ is called a Carter subgroup if $K$ is nilpotent and self-normalizing. A supersolvable subgroup $H$ of a group $G$ is called a Gaschütz subgroup if the condition $H\leq H_1< T\leq G$ implies that $\left|T:H_1\right|$ is not prime. Using the Kegel-Wielandt and Kazarin results, Monakhov showed that if every Carter subgroup of $A$ commutes with every Carter subgroup of $B$, then $G=AB$ is solvable. Moreover, he gives that $G=AB$ is solvable when every Carter subgroup of $A$ is of odd order and commutes with every Gaschütz subgroup of $B$. In addition, for convenience of the reader, the proofs of the properties of Carter subgroups given in the article ``On nilpotent self-normalizing subgroups of solvable groups' of Roger.~W.~Carter are clarified.
It is well-known that a product of two solvable groups need not to be solvable. In this thesis, depending on an article of V. S. Monakhov [10], the solvability of a finite group $G=AB$ is studied. A subgroup $K$ of a group $G$ is called a Carter subgroup if $K$ is nilpotent and self-normalizing. A supersolvable subgroup $H$ of a group $G$ is called a Gaschütz subgroup if the condition $H\leq H_1< T\leq G$ implies that $\left|T:H_1\right|$ is not prime. Using the Kegel-Wielandt and Kazarin results, Monakhov showed that if every Carter subgroup of $A$ commutes with every Carter subgroup of $B$, then $G=AB$ is solvable. Moreover, he gives that $G=AB$ is solvable when every Carter subgroup of $A$ is of odd order and commutes with every Gaschütz subgroup of $B$. In addition, for convenience of the reader, the proofs of the properties of Carter subgroups given in the article ``On nilpotent self-normalizing subgroups of solvable groups' of Roger.~W.~Carter are clarified.
Description
Keywords
Matematik, Mathematics
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
0
End Page
46