Reklam Tıklama Tahmini için Takviyeli Öğrenme

dc.contributor.advisor Yıldız, Beytullah
dc.contributor.author Haıder, Umaır
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-07T12:46:26Z
dc.date.available 2024-07-07T12:46:26Z
dc.date.issued 2023
dc.department Fen Bilimleri Enstitüsü / Yazılım Mühendisliği Ana Bilim Dalı / Yazılım Mühendisliği Bilim Dalı
dc.description.abstract Çevrimiçi reklamcılıkta kritik öneme sahip tıklama oranı (CTR) tahmini için geleneksel yöntemler, kullanıcı tercihlerinin dinamikliği ve reklamların alakasını kapsamada zorlanırken, yeni stratejilerin keşfini başarılı olanlarla dengeli bir şekilde sağlayan Thompson Örnekleme gibi takviyeli öğrenme (RL) algoritmaları, etkili bir çözüm sunar. Bu araştırmada, gerçek dünya reklam izlenimleri ve tıklamalarını simüle etmek için özel bir OpenAI Gym ortamını ve kullanıcı tercihlerinin ve reklamların alakasının sürekli değişimini ele alan dinamik CTR'yi tahmin etmek için bir Thompson Örnekleme uygulamasını içeren yeni bir RL tabanlı yaklaşım sunuyoruz. Bulgular, Thompson Örnekleme'nin CTR tahmininde, diğer RL stratejilerinden yaklaşık \%10 daha yüksek bir güven seviyesi ile, üstün bir performans sergilediğini ve bu sayede çevrimiçi reklam seçim süreçlerinin önemli ölçüde gelişebileceğini, böylece daha yüksek CTR'ler ve potansiyel olarak reklam yayıncıları için artan gelir sağlayabileceğini öne sürüyor.
dc.description.abstract Click-through rate (CTR) prediction plays a vital role in online advertising, influencing advertisement display and advertiser cost. However, traditional methods struggle to encapsulate user preference dynamics and advertisement relevance. To address this limitation, reinforcement learning (RL) algorithms, such as Thompson Sampling, offer a promising solution by effectively balancing the exploration of new strategies with the exploitation of successful ones. In this research, we introduce a novel RL-based approach for CTR prediction which involves a custom OpenAI Gym environment to simulate real-world advertisement impressions and clicks, and an implementation of Thompson Sampling to estimate CTR dynamically, addressing the continuous evolution of user preferences and advertisement relevance. Results showed that Thompson Sampling demonstrated superior performance in CTR prediction, outperforming other RL strategies. Notably, the algorithm exhibited a confidence level nearly 10\% higher than other methods. Our findings suggest that leveraging RL algorithms, particularly Thompson Sampling, can significantly enhance online advertisement selection processes, leading to higher CTRs and potentially increased revenue for publishers. en
dc.identifier.endpage 79
dc.identifier.startpage 0
dc.identifier.uri https://hdl.handle.net/20.500.14411/5052
dc.identifier.yoktezid 814214
dc.institutionauthor Yıldız, Beytullah
dc.language.iso en
dc.subject Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol
dc.subject Computer Engineering and Computer Science and Control en_US
dc.title Reklam Tıklama Tahmini için Takviyeli Öğrenme
dc.title Advertisement click prediction using reinforcement learning en_US
dc.type Master Thesis
dspace.entity.type Publication
relation.isAuthorOfPublication 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication.latestForDiscovery 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
814214 Advertisement click prediction using reinforcement learning.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format

Collections