B-metrik Uzaylarında Sabit Nokta Teoremleri

Loading...
Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Events

Abstract

Bu tezde b-metrik uzayında tanımlı çeşitli büzülme dönüşümlerinin sabit noktaları ile ilgili bazı yeni sonuçlar biraraya getirilmiştir. b-metrik uzayları, metrik uzayların bir genellemesidir ve bu uzaylarda üçgen esşitsizliği, s ≥ 1 bir sabit olmak üzere, d(x,y) ≤ s[d(x,z) + d(z,y)], şeklinde modifiye edilmektedir. Dolayısıyla, metrik uzaylarda var olan tüm sonuçlar, b- metrik uzaylardaki sonuçlardan elde edilebilir. Son yıllarda literatürde b-metrik uzayları ile ilgili çok sayıda çalışma yayınlandı. Bizim amacımız bu çalışmalardan bazılarını tek bir belge olarak toplamak ve derlemektir. Ozel olarak, yardımcı fonksiyonlar aracılığı ile tanımlanan büzülme dönüşümleri için sabit noktaların varlığı ve tekliği ile ilgili teoremler verilmektedir. Birinci bölümde metrik uzayların bazı genellemeleri verilmekte ve Banach büzülme prensibinin bu uzaylardaki versiyonu ifade edilmektedir. Ayrıca bu uzaylara ait örnekler verilmektedir. ˙İkinci bölümde, b-metrik uzaylarında karşılaştırma fonksiyonları aracılığı ile tanımlanan büzülme dönüşümlerinin sabit nokta teoremleri verilmektedir. Bölüm 3'de ise, b-metrik uzaylarında Geraghty tipi büzülme dönüşümleri ele alınmaktadır . Bölüm2 ve Bölüm3'de incelenen büzülme dönüşümleri α-kabullü olarak tanımlanmaktadır. Aslında bu sonuçlar, literatürde var olan teoremleri α-kabullü olacak şekilde düzenlenerek ifade edilmektedir. Bu şekilde, kısmi sıralı uzaylardaki ve standart metrik uzay- lardaki dönüşümlerin ve döngüsel dönüşümlerin, α-kabullü dönüşümlerin sonuçları olarak ifade edilmesi mümkün olur. Dördüncü bölümde kısmi sıralama bağıntısı tanımlanmıs ¸ b-metrik uzaylar için Bölüm 2 ve Bölüm 3'deki teoremler sonuç olarak verilmektedir. α fonksiyonunun özel bir seçimi ile tüm teoremlerin kısmi sıralanmıs ¸ uzaylarda da geçerli olduğu vurgulanmaktadır.
In this thesis, we collect some recent results on fixed points of various contractions defined on b-metric spaces. The concept of b-metric space is an extension of metric spaces on which triangle inequality is modified as d(x,y) ≤ s[d(x,z) + d(z,y)], where s is a constant greater than or equal to 1. Therefore, all existing results on metric spaces are regarded as consequences of the results on b-metric spaces. In the recent years, many publications on b-metric spaces appeared in the literature. Our aim is to collect and combine some of these papers in a single document. In particular, we give existence and uniqueness theorems for fixed points of contraction mappings defined via auxiliary functions. In Chapter 1 we give some generalizations of metric spaces and state the character- ization of the famous Banach contraction mapping principle on these spaces. We also present illustrative examples. In Chapter 2 we present fixed point theorems for contraction mappings defined via comparison functions on b-metric spaces. Chapter 3 contains recent results on fixed points of Geraghty type contractions on b-metric spaces. In both Chapter 2 and Chapter 3, α-admissible mappings are considered. In fact, results presented there are modified using α-admissibility. This makes it possi- ble to express the results on partially ordered metric spaces, standard metric spaces and cyclic mappings as conclusions of these results. As consequences of the results in Chapter 2 and Chapter 3, we discuss fixed point theorems on partially ordered b- metric spaces in Chapter 4. We point out that by a special choice of the function α, the theorems on α-admissible mappings can be stated in partially ordered b-metric spaces.

Description

Keywords

Matematik, Mathematics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

79