Eşeksenli Elektroeğrilmiş Çekirdek-kabuk Tipi Kompozit Pcl Kitosan Yara İyileşme Malzemeleri
Loading...
Date
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Bu çalışma, sentetik poly(ε-caprolactone) (PCL) ve doğal kitosan polimerlerinin doku mühendisliği uygulamaları için 3 boyutlu PCL/kitosan/PCL çekirdek-kabuk yapıları oluşturmak üzere bir araya getirilmesi ile ilgilidir. Doku iskeleleri elektroeğirme yöntemi ile üretilmiştir. Numunelerin karakterizasyon özellikleri temas açısı ölçümü (CA), Taramalı Elektron Mikroskopu (SEM), Transmisyon Elektron Mikroskopu (TEM), X-ışını Fotoelektron Spektrometresi (XPS) analizleri ile belirlenmiş ve ayrıca doku iskeleleri için gaz geçirgenlik testi, kalınlık ölçümleri, PBS emme ve büzüşme testleri yapılmıştır. Ortalama fiberler arası çap değerleri PCL için 0.717±0.198 µm, kitosan için 0.660±0.070 µm ve PCL/kitosan çekirdek-kabuk yapısı için 0.412±0.339 µm olarak hesaplanmıştır. Ayrıca ortalama gözenek boyutları PCL/kitosan çekirdek-kabuk yapısına kıyasla sırasıyla PCL için %66.91 ve kitosan için %61.90 kadar düşüş göstermiştir. PCL/kitosan çekirdek-kabuk yapısının XPS analizi PCL ve kitosan polimerlerinin karakteristik tepe değerlerini göstermiştir. Hücre kültürü çalışması L929 ATCC CCL-1 fare deri hücre hattı ile yürütülmüştür. Doku iskelelerinin biyouyumluluk performansı MTT tahlili, floresan mikrosbu, Lazer Taramalı Konfokal Mikroskobu (CLSM) analizleri ile saptanmıştır. Sonuçlar göstermiştir ki bu araştırmadaki üretilen mikro/nano lifli PCL/kitosan çekirdek-kabuk doku iskelelerinin üzerinde ve içine doğru hücre canlılığı ve yayılması artmıştır.
This study was related to combining of synthetic Poly (ε-caprolactone) (PCL) and natural chitosan polymers to form 3D PCL/chitosan core-shell structures for tissue engineering applications. The scaffolds were produced with electrospinning technique. The characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray Photoelectron spectroscopy (XPS) analysis and also gas permeability test, mechanical test, thickness measurements, PBS absorption and shrinkage tests were performed for the scaffolds. The average inter-fiber diameter values were calculated as 0.717±0.001 µm for PCL, 0.660±0.007 µm for chitosan and 0.412±0.003 µm for PCL/chitosan core-shell structures, also the average inter-fiber pore size values exhibited decrease of 66.91% and 61.90% for the PCL and chitosan structures respectively, compared to PCL/chitosan core-shell structures. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture study was carried out with L929 ATCC CCL-1 mouse fibroblast cell line. Biocompatibility performance of the scaffolds was determined with MTT assay, fluorescence, Confocal Laser Scanning Microscope (CLSM) and SEM analysis. The results showed that the created micro/nano fibrous structure of the PCL/chitosan core-shell scaffolds in this study increased the cell viability and proliferation on/within scaffolds.
This study was related to combining of synthetic Poly (ε-caprolactone) (PCL) and natural chitosan polymers to form 3D PCL/chitosan core-shell structures for tissue engineering applications. The scaffolds were produced with electrospinning technique. The characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray Photoelectron spectroscopy (XPS) analysis and also gas permeability test, mechanical test, thickness measurements, PBS absorption and shrinkage tests were performed for the scaffolds. The average inter-fiber diameter values were calculated as 0.717±0.001 µm for PCL, 0.660±0.007 µm for chitosan and 0.412±0.003 µm for PCL/chitosan core-shell structures, also the average inter-fiber pore size values exhibited decrease of 66.91% and 61.90% for the PCL and chitosan structures respectively, compared to PCL/chitosan core-shell structures. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture study was carried out with L929 ATCC CCL-1 mouse fibroblast cell line. Biocompatibility performance of the scaffolds was determined with MTT assay, fluorescence, Confocal Laser Scanning Microscope (CLSM) and SEM analysis. The results showed that the created micro/nano fibrous structure of the PCL/chitosan core-shell scaffolds in this study increased the cell viability and proliferation on/within scaffolds.
Description
Keywords
Biyomühendislik, Bioengineering
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
0
End Page
71