4b Fmrı Tabanlı Alzheimer Hastalığının Ön Tespiti için 3b-capsnet ve Rnn Modellerinin Kullanılması
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Alzheimer hastalığının (AH) ilerlemesinin erken tahmini, bilişsel gerilemenin daha etkili bir şekilde yavaşlatılmasına yardımcı olabilmektedir. Dinlenme durumu fonksiyonel manyetik rezonans görüntüleme (dd-fMRG) kullanılarak otomatik AH tanısı için evrişimli sinir ağlarına (ESA) dayalı farklı yöntemlerin uygulanmasına yönelik çeşitli çalışmalar yapılmıştır. Bu çalışmalarda tanıtılan yöntemler iki büyük zorlukla karşılaşmaktadır. Birincisi, fMRG veri kümeleri küçük boyutta olduğundan aşırı uyum gözlemlenebilmektedir. İkincisi, fMRG oturumlarının 4 boyutlu (4B) bilgilerinin verimli bir şekilde modellenmesi gerekmektedir. Çalışmalardan bazıları, derin öğrenme yöntemlerini, 4B bilgiyi modellemek için fMRG verilerinden oluşturulan fonksiyonel bağlantı matrislerine veya ayrı 2B dilimler veya 3B hacimler olarak fMRG verilerine uygulamıştır. Ancak bu durumun her iki yöntem türünde de bilgi kaybına neden olduğu gözlemlenmiştir. Bu çalışmada, AD tanısı için fMRG verilerinin uzay-zamansal (4B) bilgilerini modellemek amacıyla Kapsül ağı (CapsNet) ve tekrarlayan sinir ağını (RNN) temel alan yeni bir model önerilmektedir. Önerilen modelin etkinliğini değerlendirmek için deneyler yapılmıştır. Sonuçlara göre, önerilen modelin AH’na karşı normal kontrol (NK) ve geç hafif bilişsel bozukluk (GHBB) ile erken hafif bilişsel bozukluk (EHBB) sınıflandırma görevlerinde sırasıyla %94.5 ve %61.8 doğruluk elde edebildiği görülmüştür.
Description
Keywords
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
N/A
Scopus Q
N/A
Source
Turkish Journal of Science & Technology
Volume
19
Issue
1
Start Page
223
End Page
235