An empirical study about search-based refactoring using alternative multiple and population-based search techniques

dc.authorscopusid55625428500
dc.authorscopusid55625218200
dc.authorscopusid55931893500
dc.authorscopusid55625653800
dc.authorscopusid16642123000
dc.authorscopusid16642447800
dc.contributor.authorKoc,E.
dc.contributor.authorErsoy,N.
dc.contributor.authorAndac,A.
dc.contributor.authorCamlidere,Z.S.
dc.contributor.authorCereci,I.
dc.contributor.authorKilic,H.
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:43:50Z
dc.date.available2024-07-05T15:43:50Z
dc.date.issued2012
dc.departmentAtılım Universityen_US
dc.department-tempKoc E., Department of Computer Engineering, Atilim University, Incek, Ankara, Turkey; Ersoy N., Department of Computer Engineering, Atilim University, Incek, Ankara, Turkey; Andac A., Department of Computer Engineering, Atilim University, Incek, Ankara, Turkey; Camlidere Z.S., Department of Computer Engineering, Atilim University, Incek, Ankara, Turkey; Cereci I., Department of Computer Engineering, Atilim University, Incek, Ankara, Turkey; Kilic H., Department of Computer Engineering, Atilim University, Incek, Ankara, Turkeyen_US
dc.description.abstractAutomated maintenance of object-oriented software system designs via refactoring is a performance demanding combinatorial optimization problem. In this study, we made an empirical comparative study to see the performances of alternative search algorithms under a quality model defined by an aggregated software fitness metric. We handled 20 different refactoring actions that realize searches on design landscape defined by combination of 24 object-oriented software metrics. The investigated algorithms include random, steepest descent, multiple first descent, multiple steepest descent, simulated annealing and artificial bee colony searches. The study is realized by using a tool called A-CMA developed in Java that accepts bytecode compiled Java codes as its input. The empiricial study showed that multiple steepest descent and population-based artificial bee colony algorithms are two most suitable approaches for the efficient solution of the search based refactoring problem. © 2012 Springer-Verlag London Limited.en_US
dc.identifier.citation19
dc.identifier.doi10.1007/978-1-4471-2155-8-7
dc.identifier.endpage66en_US
dc.identifier.scopus2-s2.0-84887839407
dc.identifier.startpage59en_US
dc.identifier.urihttps://doi.org/10.1007/978-1-4471-2155-8-7
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3673
dc.institutionauthorKılıç, Hürevren
dc.institutionauthorCereci, İbrahim
dc.language.isoenen_US
dc.relation.ispartofComputer and Information Sciences II - 26th International Symposium on Computer and Information Sciences, ISCIS 2011 -- 26th Annual International Symposium on Computer and Information Science, ISCIS 2011 -- 26 September 2011 through 28 September 2011 -- London -- 100894en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAutomated refactoringen_US
dc.subjectCombinatorial optimizationen_US
dc.subjectSearch-based software engineeringen_US
dc.subjectSoftware maintenanceen_US
dc.subjectSoftware metricsen_US
dc.titleAn empirical study about search-based refactoring using alternative multiple and population-based search techniquesen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication27e7437e-ade6-4ff4-9395-851c0ee9f537
relation.isAuthorOfPublication26c615ae-248b-4103-b8f9-2afcacddaff0
relation.isAuthorOfPublication.latestForDiscovery27e7437e-ade6-4ff4-9395-851c0ee9f537
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections