Applying the Histogram of Oriented Gradients to Recognize Arabic Letters

dc.authorscopusid57234415400
dc.authorscopusid8402817900
dc.authorscopusid57234168100
dc.authorscopusid57209272227
dc.contributor.authorDouma,A.
dc.contributor.authorSengul,G.
dc.contributor.authorIbrahim Salem,F.G.
dc.contributor.authorAli Ahmed,A.
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:46:00Z
dc.date.available2024-07-05T15:46:00Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-tempDouma A., Atilim University, Department of Computer Engineering, Ankara, Turkey; Sengul G., Atilim University, Department of Computer Engineering, Ankara, Turkey; Ibrahim Salem F.G., Atilim University, Department of Computer Engineering, Ankara, Turkey; Ali Ahmed A., Atilim University, Department of Computer Engineering, Ankara, Turkeyen_US
dc.description.abstractthe aim of this paper is to recognize the Arabic handwriting letters by using histogram of oriented gradients (HOG). We collected 2240 letters by 8 people, each person wrote 28 alphabet letter 10 times. First of all we resize All 2240 hand writing letter of Arabic Alphabet as images(pre-processing) after that extract these images by using one of feature extraction methods which is histogram of oriented gradients (HOG).For classification, the K-Nearest Neighbor (KNN) is used. The results are shown by using 1120 images in the one case and 2240 images in the second case and evaluate these results with the confusion matrix. Other cases we used leave one out (LOO), 2-fold classification and leave one out cross validation. The best fully performance of HOG was with leave one out technique because of the ability of HOG algorithm to capture the shape of letter in the image according to its edges (gradients). © 2021 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/MI-STA52233.2021.9464499
dc.identifier.endpage355en_US
dc.identifier.isbn978-166541856-0
dc.identifier.scopus2-s2.0-85113701473
dc.identifier.startpage350en_US
dc.identifier.urihttps://doi.org/10.1109/MI-STA52233.2021.9464499
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3998
dc.institutionauthorŞengül, Gökhan
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering, MI-STA 2021 - Proceedings -- 1st IEEE International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering, MI-STA 2021 -- 25 May 2021 through 27 May 2021 -- Tripoli -- 171040en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject2-fold classificationen_US
dc.subjectArabic Alphabeten_US
dc.subjectConfusion Matrixen_US
dc.subjectHistogram of Oriented Gradienten_US
dc.subjectK-Nearest Neighboren_US
dc.subjectleave one out (LOO)en_US
dc.titleApplying the Histogram of Oriented Gradients to Recognize Arabic Lettersen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication.latestForDiscoveryf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections