Quantum Machine Learning in Intrusion Detection Systems: a Systematic Mapping Study

dc.authorscopusid57208838488
dc.authorscopusid16237826800
dc.contributor.authorFaker,O.
dc.contributor.authorCagiltay,N.E.
dc.date.accessioned2024-07-05T15:50:44Z
dc.date.available2024-07-05T15:50:44Z
dc.date.issued2024
dc.departmentAtılım Universityen_US
dc.department-tempFaker O., Graduate School of Natural and Applied Sciences, Atilim University, Ankara, Turkey; Cagiltay N.E., Graduate School of Natural and Applied Sciences, Atilim University, Ankara, Turkeyen_US
dc.description.abstractThe integration between quantum computing (QC) and machine learning algorithms (ML) aims to speed up computing processes and increase model accuracy rates, and this is what led developers and researchers to exploit this feature to study improving the performance of intrusion detection systems (IDSs). In this work, we present a systematic mapping review (SMR) of the most important works in the field of using quantum machine learning (QML) to increase the efficiency of anomaly detection techniques, which depend mainly on ML. After defining and applying the research methodology, the preliminary search results amounted to 240 studies from four databases. According to the exclusion and inclusion reports, we obtained 21 main studies. After reviewing and analyzing the results, the four research questions were answered. The review focused on the development of integration of intrusion detection systems with QML, the characteristics of such integration, increasing the efficiency of ML algorithms, and future research opportunities in this field. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.en_US
dc.identifier.citationcount0
dc.identifier.doi10.1007/978-981-99-7886-1_9
dc.identifier.endpage113en_US
dc.identifier.isbn978-981997885-4
dc.identifier.issn2367-3370
dc.identifier.scopus2-s2.0-85192184042
dc.identifier.scopusqualityQ4
dc.identifier.startpage99en_US
dc.identifier.urihttps://doi.org/10.1007/978-981-99-7886-1_9
dc.identifier.urihttps://hdl.handle.net/20.500.14411/4181
dc.identifier.volume817en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Networks and Systems -- 7th World Conference on Smart Trends in Systems, Security and Sustainability, WorldS4 2023 -- 21 August 2023 through 24 August 2023 -- London -- 309419en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount1
dc.subjectAnomaly detectionen_US
dc.subjectCyberattacken_US
dc.subjectIntrusion detection systems (IDSs)en_US
dc.subjectMachine learning (ML) cybersecurityen_US
dc.subjectQuantum computing (QC)en_US
dc.subjectQuantum machine learning (QML)en_US
dc.titleQuantum Machine Learning in Intrusion Detection Systems: a Systematic Mapping Studyen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

Collections