Biomechanical Design and Control of Lower Limb Exoskeleton for Sit-to-Stand and Stand-to-Sit Movements
dc.authorscopusid | 57203982713 | |
dc.authorscopusid | 57225256145 | |
dc.authorscopusid | 57203983802 | |
dc.authorscopusid | 58113783500 | |
dc.authorscopusid | 57209876827 | |
dc.contributor.author | Qureshi,M.H. | |
dc.contributor.author | Masood,Z. | |
dc.contributor.author | Rehman,L. | |
dc.contributor.author | Owais,M. | |
dc.contributor.author | Khan,M.U. | |
dc.contributor.other | Mechatronics Engineering | |
dc.date.accessioned | 2024-07-05T15:45:14Z | |
dc.date.available | 2024-07-05T15:45:14Z | |
dc.date.issued | 2018 | |
dc.department | Atılım University | en_US |
dc.department-temp | Qureshi M.H., Department of Mechatronics Engineering, Air University, Islamabad, Pakistan; Masood Z., Department of Mechatronics Engineering, Air University, Islamabad, Pakistan; Rehman L., Department of Mechatronics Engineering, Air University, Islamabad, Pakistan; Owais M., Department of Mechatronics Engineering, Air University, Islamabad, Pakistan; Khan M.U., Department of Mechatronics Engineering, Atilim University, Ankara, Turkey | en_US |
dc.description.abstract | In this paper, we present design and development phase of lower limb robotic exoskeleton that can assist paralyzed individuals. Motion of the human wearing exoskeleton is introduced by actuators. Both exoskeleton legs are attached to the supporting frame by passive universal joints. The exoskeleton provides 3 DOFs per limb of which two joints are active and one passive. The control actions i.e., sit-to-stand and stand-to-sit movements are triggered using Double Pole Double Throw (DPDT) toggle switch. The control scheme is implement using Switch control method and the feedback is provided by means of current measurement. This assistive device can be utilized for the disabled persons. The simulation results are provided that evaluates the performance of the control actions on exoskeleton. © 2018 IEEE. | en_US |
dc.identifier.citation | 9 | |
dc.identifier.doi | 10.1109/MESA.2018.8449158 | |
dc.identifier.isbn | 978-153864643-4 | |
dc.identifier.scopus | 2-s2.0-85053880040 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.1109/MESA.2018.8449158 | |
dc.identifier.wosquality | N/A | |
dc.institutionauthor | Khan, Muhammad Umer | |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2018 -- 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2018 -- 2 July 2018 through 4 July 2018 -- Oulu -- 139111 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Assistive devices | en_US |
dc.subject | dynamic | en_US |
dc.subject | exoskeleton | en_US |
dc.subject | rehabilitation | en_US |
dc.subject | sit-to-stand | en_US |
dc.subject | stand-to-sit | en_US |
dc.subject | static | en_US |
dc.title | Biomechanical Design and Control of Lower Limb Exoskeleton for Sit-to-Stand and Stand-to-Sit Movements | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e2e22115-4c8f-46cc-bce9-27539d99955e | |
relation.isAuthorOfPublication.latestForDiscovery | e2e22115-4c8f-46cc-bce9-27539d99955e | |
relation.isOrgUnitOfPublication | cfebf934-de19-4347-b1c4-16bed15637f7 | |
relation.isOrgUnitOfPublication.latestForDiscovery | cfebf934-de19-4347-b1c4-16bed15637f7 |