BBO-DE algoritması kullanarak akıllı şehirlerde WSN dağıtım optimizasyonu

Loading...
Thumbnail Image

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Software Engineering
(2005)
Department of Software Engineering was founded in 2005 as the first department in Ankara in Software Engineering. The recent developments in current technologies such as Artificial Intelligence, Machine Learning, Big Data, and Blockchains, have placed Software Engineering among the top professions of today, and the future. The academic and research activities in the department are pursued with qualified faculty at Undergraduate, Graduate and Doctorate Degree levels. Our University is one of the two universities offering a Doctorate-level program in this field. In addition to focusing on the basic phases of software (analysis, design, development, testing) and relevant methodologies in detail, our department offers education in various areas of expertise, such as Object-oriented Analysis and Design, Human-Computer Interaction, Software Quality Assurance, Software Requirement Engineering, Software Design and Architecture, Software Project Management, Software Testing and Model-Driven Software Development. The curriculum of our Department is catered to graduate individuals who are prepared to take part in any phase of software development of large-scale software in line with the requirements of the software sector. Department of Software Engineering is accredited by MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) until September 30th, 2021, and has been granted the EUR-ACE label that is valid in Europe. This label provides our graduates with a vital head-start to be admitted to graduate-level programs, and into working environments in European Union countries. The Big Data and Cloud Computing Laboratory, as well as MobiLab where mobile applications are developed, SimLAB, the simulation laboratory for Medical Computing, and software education laboratories of the department are equipped with various software tools and hardware to enable our students to use state-of-the-art software technologies. Our graduates are employed in software and R&D companies (Technoparks), national/international institutions developing or utilizing software technologies (such as banks, healthcare institutions, the Information Technologies departments of private and public institutions, telecommunication companies, TÜİK, SPK, BDDK, EPDK, RK, or universities), and research institutions such TÜBİTAK.

Journal Issue

Abstract

Kablosuz Sensör Ağları (WSN'ler), akıllı şehir altyapısının dağıtımında kritik bir rol oynar ve kentsel ortamların etkin izlenmesi ve yönetimi sağlar. WSN'lerin akıllı şehirlerdeki dağıtımını optimize etmek, karmaşık ve dinamik doğası nedeniyle zorlu bir görevdir. Bu tez, Biyoğeografi Tabanlı Optimizasyon ve Diferansiyel Evrim (BBO-DE) algoritmalarının birleşimiyle WSN dağıtımına yönelik yeni bir yaklaşım sunmaktadır. Bu araştırmanın amacı, BBO-DE algoritmasının akıllı şehir senaryolarında optimal WSN dağıtımını gerçekleştirmedeki etkinliğini araştırmaktır. Algoritma, biyoğeografi prensiplerinden ilham alan biyoğeografi tabanlı optimizasyon tekniğini ve diferansiyel evrimin güçlü arama yeteneklerini bir araya getirir. Sensör düğümü yerleşimi için kapsama, ağ bağlantısı, dağıtılan sensör sayısı ve algılama örtüşmesi gibi faktörleri dikkate alarak keşfi ve kullanımı dengeleyerek neredeyse optimal çözümler bulur. BBO-DE algoritmasının performansını değerlendirmek için bir dizi deney yapıldı. Temel BBO ve genetik algoritma gibi diğer bilinen optimizasyon teknikleriyle karşılaştırmalı bir analiz gerçekleştirildi. Sonuçlar, BBO-DE algoritmasının diğer optimizasyon yöntemlerine göre tüm faktörlerde daha iyi performans sergilediğini göstermektedir. Bu araştırma, BBO-DE algoritmasını tanıtarak ve değerlendirerek akıllı şehirlerde WSN dağıtımı alanına katkıda bulunur. Bulgular, algoritmanın 3D uzayda optimal WSN dağıtımını gerçekleştirmedeki etkinliğini vurgulayarak akıllı şehir uygulamalarında geliştirilmiş algılama yetenekleri ve kaynak kullanımına yol açar.
Wireless Sensor Networks (WSNs) are of paramount importance in the implementation of intelligent urban infrastructure, facilitating the effective surveillance and administration of metropolitan environments. The process of optimizing the deployment of Wireless Sensor Networks (WSNs) in smart cities poses significant challenges owing to the intricate and ever-changing characteristics of the environment. This thesis presents a novel approach to WSN deployment using the hybridization between the Biogeography-Based Optimization and Differential Evolution (BBO-DE) algorithms. The objective of this research is to investigate the effectiveness of the BBO-DE algorithm in achieving optimal WSN deployment in smart city scenarios. The algorithm combines the biogeography-based optimization technique, inspired by the principles of biogeography, with the powerful search capabilities of differential evolution. It balances exploration and exploitation to find near-optimal solutions for sensor node placement, considering factors such as coverage, network connectivity, number of deployed sensors and sensing overlapping. To evaluate the performance of the BBO-DE algorithm, a series of experiments were conducted. A comparative analysis was performed, benchmarking the BBO-DE algorithm against other well-known optimization techniques, including basic BBO and genetic algorithm. The results demonstrate that the BBO-DE algorithm outperforms other optimization methods in all factors. This research contributes to the field of WSN deployment in smart cities by introducing and evaluating the BBO-DE algorithm. The findings highlight the algorithm's effectiveness in achieving optimal WSN deployment in 3D-space, leading to improved sensing capabilities and resource utilization in smart city applications.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

162