Similarity-inclusive Link Prediction with Quaternions

dc.authoridÖzkan, Kemal/0000-0003-2252-2128
dc.authoridKURT, ZUHAL/0000-0003-1740-6982
dc.authorscopusid55806648900
dc.authorscopusid6701450919
dc.authorscopusid36661765600
dc.authorscopusid15081108900
dc.authorwosidÖzkan, Kemal/GLU-8209-2022
dc.authorwosidKURT, ZUHAL/AAE-5182-2022
dc.contributor.authorKurt, Zuhal
dc.contributor.authorGerek, Omer Nezih
dc.contributor.authorBilge, Alper
dc.contributor.authorOzkan, Kemal
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:18:42Z
dc.date.available2024-07-05T15:18:42Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Kurt, Zuhal] Atilim Univ, Dept Comp Engn, Ankara, Turkey; [Gerek, Omer Nezih] Eskisehir Tech Univ, Dept Elect & Elect Engn, Eskisehir, Turkey; [Bilge, Alper] Akdeniz Univ, Dept Comp Engn, Antalya, Turkey; [Ozkan, Kemal] Eskisehir Osmangazi Univ, Dept Comp Engn, Eskisehir, Turkeyen_US
dc.descriptionÖzkan, Kemal/0000-0003-2252-2128; KURT, ZUHAL/0000-0003-1740-6982en_US
dc.description.abstractThis paper proposes a Quaternion-based link prediction method, a novel representation learning method for recommendation purposes. The proposed algorithm depends on and computation with Quaternion algebra, benefiting from the expressiveness and rich representation learning capability of the Hamilton products. The proposed method depends on a link prediction approach and reveals the significant potential for performance improvement in top-N recommendation tasks. The experimental results indicate the superior performance of the approach using two quality measurements - hits rate, and coverage - on the Movielens and Hetrec datasets. Additionally, extensive experiments are conducted on three subsets of the Amazon dataset to understand the flexibility of this algorithm to incorporate different information sources and demonstrate the effectiveness of Quaternion algebra in graph-based recommendation algorithms. The proposed algorithms obtain comparatively higher performance, they are improved with similarity factors. The results show that the proposed quaternion-based algorithm can effectively deal with the deficiencies in graph-based recommender system, making it a preferable alternative among the other available methods.en_US
dc.identifier.citation0
dc.identifier.doi10.5220/0010469808420854
dc.identifier.endpage854en_US
dc.identifier.isbn9789897585098
dc.identifier.scopus2-s2.0-85130355111
dc.identifier.startpage842en_US
dc.identifier.urihttps://doi.org/10.5220/0010469808420854
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1892
dc.identifier.wosWOS:000783390600093
dc.institutionauthorKurt, Zühal
dc.language.isoenen_US
dc.publisherScitepressen_US
dc.relation.ispartof23rd International Conference on Enterprise Information Systems (ICEIS) -- APR 26-28, 2021 -- ELECTR NETWORKen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGraphsen_US
dc.subjectLink Predictionen_US
dc.subjectRecommender Systemen_US
dc.subjectQuaternionsen_US
dc.titleSimilarity-inclusive Link Prediction with Quaternionsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationc1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isAuthorOfPublication.latestForDiscoveryc1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections