A comparison of Pattern Recognition Approaches for Recognizing Handwriting in Arabic Letters

dc.authorscopusid57234415400
dc.authorscopusid57209272227
dc.authorscopusid8402817900
dc.authorscopusid57223036374
dc.authorscopusid35317966800
dc.authorscopusid57234168100
dc.contributor.authorDouma,A.
dc.contributor.authorAhmed,A.A.
dc.contributor.authorSengul,G.
dc.contributor.authorSanthosh,J.
dc.contributor.authorJomah,O.S.M.
dc.contributor.authorIbrahim Salem,F.G.
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:46:00Z
dc.date.available2024-07-05T15:46:00Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-tempDouma A., Atilim University, Department of Computer Engineering, Ankara, Turkey; Ahmed A.A., Atilim University, Department of Computer Engineering, Ankara, Turkey; Sengul G., Atilim University, Department of Computer Engineering, Ankara, Turkey; Santhosh J., Atilim University, Department of Computer Engineering, Ankara, Turkey; Jomah O.S.M., Atilim University, Department of Computer Engineering, Ankara, Turkey; Ibrahim Salem F.G., Atilim University, Department of Computer Engineering, Ankara, Turkeyen_US
dc.description.abstractFor Arabic letters recognition, we achieve three of pattern recognition approaches namely gray level co-occurrence matrix (GLCM), local binary pattern recognition (LBP) and artificial neural network (ANN) and compare between them to result best performance. Two of these methods level co-occurrence matrix and local binary pattern recognition are used for feature extraction whereas in artificial neural network (ANN) we use the intensity values of pixels for input of the neural network. Two classifiers are used, the K-Nearest Neighbor classifier (KNN) for the LBP, GLCM and neural network classifier for (ANN) artificial neural network. Also, we evaluate the results by using leave one person out approach, fold classification and leave one out. © 2021 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/MI-STA52233.2021.9464483
dc.identifier.endpage824en_US
dc.identifier.isbn978-166541856-0
dc.identifier.scopus2-s2.0-85113641728
dc.identifier.startpage818en_US
dc.identifier.urihttps://doi.org/10.1109/MI-STA52233.2021.9464483
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3999
dc.institutionauthorŞengül, Gökhan
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering, MI-STA 2021 - Proceedings -- 1st IEEE International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering, MI-STA 2021 -- 25 May 2021 through 27 May 2021 -- Tripoli -- 171040en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArabic Alphabeten_US
dc.subjectArtificial Neural Networken_US
dc.subjectGray Level Co-occurrence Matrixen_US
dc.subjectK-Nearest Neighbor classifier (KNN)en_US
dc.subjectLocal Binary Patternen_US
dc.titleA comparison of Pattern Recognition Approaches for Recognizing Handwriting in Arabic Lettersen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication.latestForDiscoveryf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections