A Comparison of Pattern Recognition Approaches for Recognizing Handwriting in Arabic Letters

dc.authorscopusid 57234415400
dc.authorscopusid 57209272227
dc.authorscopusid 8402817900
dc.authorscopusid 57223036374
dc.authorscopusid 35317966800
dc.authorscopusid 57234168100
dc.contributor.author Douma,A.
dc.contributor.author Ahmed,A.A.
dc.contributor.author Sengul,G.
dc.contributor.author Santhosh,J.
dc.contributor.author Jomah,O.S.M.
dc.contributor.author Ibrahim Salem,F.G.
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T15:46:00Z
dc.date.available 2024-07-05T15:46:00Z
dc.date.issued 2021
dc.department Atılım University en_US
dc.department-temp Douma A., Atilim University, Department of Computer Engineering, Ankara, Turkey; Ahmed A.A., Atilim University, Department of Computer Engineering, Ankara, Turkey; Sengul G., Atilim University, Department of Computer Engineering, Ankara, Turkey; Santhosh J., Atilim University, Department of Computer Engineering, Ankara, Turkey; Jomah O.S.M., Atilim University, Department of Computer Engineering, Ankara, Turkey; Ibrahim Salem F.G., Atilim University, Department of Computer Engineering, Ankara, Turkey en_US
dc.description.abstract For Arabic letters recognition, we achieve three of pattern recognition approaches namely gray level co-occurrence matrix (GLCM), local binary pattern recognition (LBP) and artificial neural network (ANN) and compare between them to result best performance. Two of these methods level co-occurrence matrix and local binary pattern recognition are used for feature extraction whereas in artificial neural network (ANN) we use the intensity values of pixels for input of the neural network. Two classifiers are used, the K-Nearest Neighbor classifier (KNN) for the LBP, GLCM and neural network classifier for (ANN) artificial neural network. Also, we evaluate the results by using leave one person out approach, fold classification and leave one out. © 2021 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/MI-STA52233.2021.9464483
dc.identifier.endpage 824 en_US
dc.identifier.isbn 978-166541856-0
dc.identifier.scopus 2-s2.0-85113641728
dc.identifier.startpage 818 en_US
dc.identifier.uri https://doi.org/10.1109/MI-STA52233.2021.9464483
dc.identifier.uri https://hdl.handle.net/20.500.14411/3999
dc.institutionauthor Şengül, Gökhan
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering, MI-STA 2021 - Proceedings -- 1st IEEE International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering, MI-STA 2021 -- 25 May 2021 through 27 May 2021 -- Tripoli -- 171040 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Arabic Alphabet en_US
dc.subject Artificial Neural Network en_US
dc.subject Gray Level Co-occurrence Matrix en_US
dc.subject K-Nearest Neighbor classifier (KNN) en_US
dc.subject Local Binary Pattern en_US
dc.title A Comparison of Pattern Recognition Approaches for Recognizing Handwriting in Arabic Letters en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication.latestForDiscovery f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections