Ss-mla: Uzaktan algılamalı görüntülerin çok etiketli sınıflandırması için yeni bir çözüm
Loading...
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Uzaktan algılanan görüntülerin çok etiketli sınıflandırması çok önemli bir araştırma alanıdır. Kentsel büyümeyi izlemekten askeri gözetlemeye kadar birçok uygulamaya sahiptir. Uzaktan algılanan görüntülerin çok etiketli sınıflandırması için birçok algoritma ve yöntem önerilmiştir. Bu tezde iki yaklaşım sunulmaktadır. İlki, küçük veri kümelerinde karmaşık yöntemlerin daha basit olanlara göre avantajı olmadığını gösteren CNN tabanlı basit bir modeldir. İkincisi, uzaktan algılanan görüntülerin çoklu etiketli sınıflandırması için Semi-Supervised Multi-Label Annotizer (SS-MLA) adı verilen rekabetçi bir Vector-Quantized Temporal Associative Memory (VQTAM) tabanlı yöntemdir. İlk yöntem, uzaktan algılanmış dört farklı veri kümesi üzerinde F1-Skorlarına göre literatürdeki diğer son teknoloji yöntemlerle ve SS-MLA ile karşılaştırılmıştır. Deney sonuçları, yeni bir yaklaşım olarak SS-MLA'nın, karşılaştırmaların yarısından ve önerilen basit yöntemden daha iyi sonuçlar verdiğini göstermektedir. Algoritma ve yöntemlerin tüm uygulamaları için Python 3.8 ortamında Tensorflow-GPU 2.4.0 ve Numpy 1.19.5 çerçeveleri kullanılmıştır.
Multi-label classification of remotely sensed images is a very important research area. It has many applications from tracking urban growth to military surveillance. Many algorithms and methods are proposed for multi-label annotation of remotely sensed images. In this thesis, two approaches are provided. The first one is a CNN-based straightforward model to show that in small datasets sophisticated methods have no advantage over simpler ones. The second one is a competitive Vector-Quantized Temporal Associative Memory (VQTAM) based method called Semi-Supervised Multi-Label Annotizer (SS-MLA) for multi-label annotation of remotely sensed images. The first method is compared with SS-MLA along with other state-of-the-art methods from the literature according to their F1-Scores on four different remotely sensed datasets with SS-MLA. The experiment results show that SS-MLA, as a new approach, achieves better results than half of the comparisons as well as the proposed straightforward method. For all the implementations of the algorithms and methods, Tensorflow-GPU 2.4.0 and Numpy 1.19.5 frameworks are used in a Python 3.8 environment.
Multi-label classification of remotely sensed images is a very important research area. It has many applications from tracking urban growth to military surveillance. Many algorithms and methods are proposed for multi-label annotation of remotely sensed images. In this thesis, two approaches are provided. The first one is a CNN-based straightforward model to show that in small datasets sophisticated methods have no advantage over simpler ones. The second one is a competitive Vector-Quantized Temporal Associative Memory (VQTAM) based method called Semi-Supervised Multi-Label Annotizer (SS-MLA) for multi-label annotation of remotely sensed images. The first method is compared with SS-MLA along with other state-of-the-art methods from the literature according to their F1-Scores on four different remotely sensed datasets with SS-MLA. The experiment results show that SS-MLA, as a new approach, achieves better results than half of the comparisons as well as the proposed straightforward method. For all the implementations of the algorithms and methods, Tensorflow-GPU 2.4.0 and Numpy 1.19.5 frameworks are used in a Python 3.8 environment.
Description
Keywords
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
0
End Page
67