Mikroorganizmaların yapışmasını önleyici inorganik ve organik akıllı yüzeylerin geliştirilmesi ve incelenmesi

Research Projects

Organizational Units

Organizational Unit
Airframe and Powerplant Maintenance
(2012)
The Atılım University Department of Airframe and Powerplant Maintenance has been offering Civil Aviation education in English since 2012. In an effort to provide the best level of education, ATILIM UNIVERSITY demonstrated its merit as a role model in Civil Aviation Education last year by being granted a SHY 147 certificate with the status of “Approved Aircraft Maintenance Training Institution” by the General Directorate of Civil Aviation. The SHY 147 is a certificate for Approved Aircraft Maintenance Training Institutions. It is granted to institutions where training programs have undergone inspection, and the quality of the education offered has been approved by the General Directorate of Civil Aviation. With our Civil Aviation Training Center at Esenboğa Airport (our hangar), and the two Cessna-337 planes with double piston engines both of which are fully operational, as well our Beechcraft C90 Kingait plaine with double Turboprop engines, Atılım University is an institution to offer hands-on technical training in civil aviation, and one that strives to take the education it offers to the extremes in terms of technology. The Atılım university Graduate School Department of Airframe and Powerplant Maintenance is a fully-equipped civil aviation school to complement its theoretical education with hands-on training using planes of various kinds. Even before their graduation, most of our students are hired in Turkey’s most prestigious institutions in such a rapidly-developing sector. We are looking forward to welcoming you at this modern and contemporary institution for your education in civil aviation.
Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

Özellikle uzun süreli kullanımları sırasında tıbbi cihazların yüzeyinde meydana gelen biyofilm oluşumu, hastane ortamında yakalanılan birçok enfeksiyonun temel nedenidir. Çoğu zaman bu enfeksiyonlar, iyileşme sürecini gecikmeye uğratmakta ve sürekli kendisini tekrarlayabilen komplikasyonlar sonucu maliyeti yüksek müdahalelere sebep olmaktadır. Bakteri yapışmasına dirençli yüzeyler hazırlamak, biyofilm oluşumuyla mücadelede etkili bir yaklaşım olabilir. Bu tez çalışmasıyla, mikroorganizmaların yüzeye yapışmasını engelleyici inorganik ve organik akıllı yüzeyler geliştirilmesi hedeflenmiştir. İlk olarak, AISI 316L çelikleri üzerinde kubik ve hekzagonal benzeri kristalografik yapılarda bulunan bor nitrür (BN) kaplamaların bakteriyostatik davranışı incelenmiştir. Bu çalışmada, atomların kristalografik düzenlerinin bakteri yapışmasına etkisi ortaya konmuştur. Organik yüzey çalışmasında ise, katyonik peptit, Laktoferisin B (LFB)'nin kimyasal olarak bağlanmasıyla modifiye edilmiş silikon kauçuğu yüzeylerin antibakteriyel aktiviteleri değerlendirilmiştir. Bu çalışma sonucunda, peptitlerin yüzeye başarılı bir şekilde bağlandıkları ve kataterlerde genellikle biyofilm oluşumuna yol açan S. epidermidis ve P. aeruginosa gibi bakterilere karşı öldürücü etkileri gözlemlenmiştir.
Biofilm formation on medical devices particularly during long-term use is the cause of many hospital-acquired infections. Most of the time, they extend the healing process and bring about high medical expenditures due to perpetual complications. To modify surfaces in a way resistant to bacterial adhesion could be a powerful approach to combat biofilm formation. In the context of this thesis, we aimed to develop inorganic and organic smart surfaces for anti-biofouling applications. First, we studied on the bacteriostatic effect of boron nitride (BN) coatings with c-BN and h-BN like crystallographic structures on AISI 316L steel. Here we report how the spatial arrangement of atoms affected the bacterial accumulation on specimen surfaces. Furthermore, for the case of organic surfaces, we investigated the antibacterial behavior of silicone rubber surfaces modified by immobilized cationic peptide, Lactoferricin B (LFB). In this research, we observed successful conjugation of a peptide and its lethal action on S. epidermidis and P. aeruginosa, generally encountered microorganisms which develop biofilm on catheters

Description

Keywords

Biyomühendislik, Biyoteknoloji, Mühendislik Bilimleri, Bioengineering, Antibakteriyel ajanlar, Biotechnology, Engineering Sciences, Antibakteriyel aktivite, Anti-bacterial agents, Antibakteriyel aktivite, Antibacterial activity, Antibacterial activity, C peptid, C peptide

Turkish CoHE Thesis Center URL

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

97