On the Approximation of Analytic Functions by the <i>q</I>-bernstein Polynomials in the Case <i>q</I> &gt; 1

dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorOstrovska, Sofiya
dc.contributor.otherMathematics
dc.date.accessioned2024-10-06T10:57:47Z
dc.date.available2024-10-06T10:57:47Z
dc.date.issued2010
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.description.abstractSince for q > 1, the q-Bernstein polynomials B(n,q) are not positive linear operators on C[0, 1], the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. In this paper, new results on the approximation of continuous functions by the q-Bernstein polynomials in the case q > 1 are presented. It is shown that if f is an element of C[0, 1] and admits an analytic continuation f(z) into {z : |z| < a}, then B(n,q) (f; z) -> f (z) as n -> infinity, uniformly on any compact set in {z : |z| < a}.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount7
dc.identifier.endpage112en_US
dc.identifier.issn1068-9613
dc.identifier.scopusqualityQ3
dc.identifier.startpage105en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/8793
dc.identifier.volume37en_US
dc.identifier.wosWOS:000285976700006
dc.identifier.wosqualityQ3
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherKent State Universityen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectq-integersen_US
dc.subjectq-binomial coefficientsen_US
dc.subjectq-Bernstein polynomialsen_US
dc.subjectuniform convergenceen_US
dc.titleOn the Approximation of Analytic Functions by the <i>q</I>-bernstein Polynomials in the Case <i>q</I> &gt; 1en_US
dc.typeArticleen_US
dc.wos.citedbyCount7
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections