On the Approximation of Analytic Functions by the <i>q</I>-bernstein Polynomials in the Case <i>q</I> &gt; 1

dc.contributor.author Ostrovska, Sofiya
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-10-06T10:57:47Z
dc.date.available 2024-10-06T10:57:47Z
dc.date.issued 2010
dc.description.abstract Since for q > 1, the q-Bernstein polynomials B(n,q) are not positive linear operators on C[0, 1], the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. In this paper, new results on the approximation of continuous functions by the q-Bernstein polynomials in the case q > 1 are presented. It is shown that if f is an element of C[0, 1] and admits an analytic continuation f(z) into {z : |z| < a}, then B(n,q) (f; z) -> f (z) as n -> infinity, uniformly on any compact set in {z : |z| < a}. en_US
dc.identifier.issn 1068-9613
dc.identifier.uri https://hdl.handle.net/20.500.14411/8793
dc.language.iso en en_US
dc.publisher Kent State University en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject q-integers en_US
dc.subject q-binomial coefficients en_US
dc.subject q-Bernstein polynomials en_US
dc.subject uniform convergence en_US
dc.title On the Approximation of Analytic Functions by the <i>q</I>-bernstein Polynomials in the Case <i>q</I> &gt; 1 en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ostrovska, Sofiya
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 112 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 105 en_US
gdc.description.volume 37 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.wos WOS:000285976700006
gdc.wos.citedcount 7
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections