On the Approximation of Analytic Functions by the <i>q</I>-bernstein Polynomials in the Case <i>q</I> &gt; 1

dc.authorwosid Ostrovska, Sofiya/AAA-2156-2020
dc.contributor.author Ostrovska, Sofiya
dc.contributor.other Mathematics
dc.date.accessioned 2024-10-06T10:57:47Z
dc.date.available 2024-10-06T10:57:47Z
dc.date.issued 2010
dc.department Atılım University en_US
dc.department-temp Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
dc.description.abstract Since for q > 1, the q-Bernstein polynomials B(n,q) are not positive linear operators on C[0, 1], the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. In this paper, new results on the approximation of continuous functions by the q-Bernstein polynomials in the case q > 1 are presented. It is shown that if f is an element of C[0, 1] and admits an analytic continuation f(z) into {z : |z| < a}, then B(n,q) (f; z) -> f (z) as n -> infinity, uniformly on any compact set in {z : |z| < a}. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 7
dc.identifier.endpage 112 en_US
dc.identifier.issn 1068-9613
dc.identifier.scopusquality Q3
dc.identifier.startpage 105 en_US
dc.identifier.uri https://hdl.handle.net/20.500.14411/8793
dc.identifier.volume 37 en_US
dc.identifier.wos WOS:000285976700006
dc.identifier.wosquality Q3
dc.institutionauthor Ostrovska, Sofiya
dc.language.iso en en_US
dc.publisher Kent State University en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject q-integers en_US
dc.subject q-binomial coefficients en_US
dc.subject q-Bernstein polynomials en_US
dc.subject uniform convergence en_US
dc.title On the Approximation of Analytic Functions by the <i>q</I>-bernstein Polynomials in the Case <i>q</I> &gt; 1 en_US
dc.type Article en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections